Unit 6: Introduction to Fiber and Textile Analysis
By the end of this chapter, you will be able to:

- Identify and describe common weave patterns of textile samples
- Compare and contrast various types of fibers through physical and chemical analysis
- Describe principle characteristics used to identify common fibers
- Apply forensic science techniques to analyze fibers
Introduction

• **Fibers** are used in forensic science to create a link between **crime** and **suspect**
• Through normal activities
 • We **shed** fibers
 • We **pick up** fibers
• Very small fibers are classified as **trace evidence**
• Collecting fibers within 24 hours is critical
Introduction

• **Direct transfer** - fibers may be transferred directly from victim to suspect or suspect to victim.

• **Secondary transfer** - If a victim has fibers on his person that he picked up and then transferred to a suspect.
How Forensic Scientists Use Fibers

- **Type of fiber** – composition, uniqueness, and so on.
- **Fiber color** – often key to matching techniques.
- **Number found** – usually the more found the easier the match.
- **Where found** – can you place the suspect at the scene?
- **Origin (where it came from)** – carpet, upholstery, car, and so forth.
How Forensic Scientists Use Fibers

• **Multiple fibers** – several types of fibers can be more conclusive.
• **Type of crime** – can be the key to fiber transfer (possibility of violence)
• **Time** between crime and fiber discovery – passage of time greatly reduces the effectiveness of fiber evidence.
Types of Fibers

• **Natural fibers** are derived in whole from animal or plant sources.
 • Examples include wool, mohair, cashmere, furs, and cotton.
• **Man-made (synthetic) fibers** are manufactured.
 • Regenerated fibers are manufactured from natural raw materials and include rayon, acetate, and triacetate.
 • Produced solely from synthetic chemicals
 • Examples include nylons, polyesters, and acrylics
Types of Fibers

- **Polymers** or macromolecules, are **synthetic fibers** composed of a large number of atoms arranged in repeating units known as monomers.

Structure of Monomers and Polymers

MONOMER

A monomer is a small molecule.

POLYMER

A polymer is a long-chain molecule made up of a repeated pattern of monomers.
Fiber Classification – Natural Fibers

- **Animal fibers** (made of proteins):
 - Wool and cashmere from **sheep**
 - Wool is the **most common** animal fiber
 - Mohair from **goats**
 - Angora from **rabbits**
 - Hair from alpacas, llamas, and camels
 - Silk from **caterpillar cocoons**
 - (longer fiber does not shed easily)
Fiber Classification – Natural Fibers

- Plant fibers (made of the polymer **cellulose**)
 - Absorb **water**
 - **Insoluble** in water
 - Very **resistant** to damage from harsh chemicals
 - Dissolvable only by **strong acids**
 - Becomes **brittle** over time
Fiber Classification – Natural Fibers

• Plant fibers:
 • **Cotton** - most common textile plant fiber
 • Coir from coconuts is **durable**
 • Hemp, jute, and flax from **stems** grow in bundles
 • Manila and sisal from leaves deteriorate more quickly
Fiber Classification – Natural Fibers

- Mineral Fibers:
 - **Fiberglass** - a fibrous form of glass
 - **Asbestos** - a crystalline structure
Fiber Classification – Synthetic Fibers

• **50%** of fabrics are *artificially* produced
 • Examples:
 • Rayon
 • Acetate
 • Nylon
 • Acrylic
 • Polyester
Fiber Classification – Synthetic Fibers

- Regenerated Fibers (derived from cellulose):
 - **Rayon**
 - Most common in this group
 - *Imitates* natural fibers, but *stronger*
Fiber Classification – Synthetic Fibers

• Celenese®
 • Cellulose chemically combined with acetate
 • Found in many carpets

• Polyamide nylon
 • Cellulose combined with three acetate units
 • Breathable and lightweight
 • Used in performance clothing
Fiber Classification – Synthetic Polymer Fibers

- Petroleum base
- Very different from other fibers
- **Monomers** join to form **polymers**
- Fibers are spun together into yarns
- No internal structures
- Uniform diameters
Fiber Classification – Synthetic Polymer Fibers

- Polyester
 - “Polar fleece”
 - **Wrinkle-resistant**
 - **Not** easily broken down by light or concentrated acid
 - Added to natural fibers for **strength**
Fiber Classification – Synthetic Polymer Fibers

- Nylon
 - Easily broken down by light and concentrated acid
 - Otherwise similar to polyester
Fiber Classification – Synthetic Polymer Fibers

- Acrylic
 - inexpensive
 - Tends to “ball” easily
 - Substitute for artificial wool or fur
Fiber Classification – Synthetic Polymer Fibers

- Olefins
 - High performance
 - **Quick drying**
 - Resistant to wear
Comparison of Natural and Synthetic Fibers

Visual Diagnostics of Some Common Textile Fibers under Magnification

<table>
<thead>
<tr>
<th>Cotton</th>
<th>Flax</th>
<th>Silk</th>
<th>Wool</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flattened hose appearance</td>
<td>• “bamboo stick” appearance</td>
<td>• do not taper, yet exhibit small variations in diameter</td>
<td>• surface scales may be visible</td>
<td>• vary widely in cross-sectional shape and diameter</td>
</tr>
<tr>
<td>• Up to 2 inches long tapering to a blunt end</td>
<td>• straight with angles but not very curved</td>
<td>• may be paired (raw silk) with another fiber</td>
<td>• hollow or partial hollow core</td>
<td>• generally straight to gentle curves</td>
</tr>
<tr>
<td>• may have a frayed “root”</td>
<td>• “nodes” are visible every inch or so</td>
<td>• no internal structure</td>
<td>• fibers up to 3 inches long tapering to a fine point</td>
<td>• uniform in diameter</td>
</tr>
<tr>
<td>• hollow core not always visible</td>
<td>• often occur in bundles of several fibers</td>
<td></td>
<td></td>
<td>• may have surface treatment that appears as spots, stains, or pits</td>
</tr>
</tbody>
</table>
Comparison of Natural and Synthetic Fibers

• Under magnification, all synthetic fibers have very regular diameters
• Hairs have cuticles
Yarns, Fabrics, and Textiles Oh My!

- **Yarns** - fibers (of any length, thick or thin, loose or tight) twisted or **spun together**
 - Any given yarn will have a **direction of twist**
 - Forensic scientists will identify the twist direction as part of their identification.
Yarns, Fabrics, and Textiles Oh My!

- Blending fibers meets different needs (e.g., resistance to wrinkling)
- Fibers are woven into fabrics or textiles
 - Threads are arranged side by side (the warp)
 - More threads (the weft) are woven back and forth crosswise through the warp
Weave Patterns

- **Thread count** - The number of threads that are packed together for any given amount of fabric

<table>
<thead>
<tr>
<th></th>
<th>Plain / Tabby</th>
<th>Basket</th>
<th>Satin</th>
<th>Twill</th>
<th>Leno</th>
</tr>
</thead>
<tbody>
<tr>
<td>firm and wears well</td>
<td></td>
<td></td>
<td></td>
<td>very strong</td>
<td></td>
</tr>
<tr>
<td>snag resistant</td>
<td></td>
<td></td>
<td></td>
<td>dense and compact</td>
<td></td>
</tr>
<tr>
<td>low tear strength</td>
<td></td>
<td></td>
<td></td>
<td>different faces</td>
<td></td>
</tr>
<tr>
<td>tends to wrinkle</td>
<td></td>
<td></td>
<td></td>
<td>diagonal design on surface</td>
<td></td>
</tr>
<tr>
<td>open or porous weave</td>
<td></td>
<td></td>
<td></td>
<td>shiny surface</td>
<td></td>
</tr>
<tr>
<td>does not wrinkle</td>
<td></td>
<td></td>
<td></td>
<td>high light reflectance</td>
<td></td>
</tr>
<tr>
<td>not very durable</td>
<td></td>
<td></td>
<td></td>
<td>little friction with other garments</td>
<td></td>
</tr>
<tr>
<td>tends to distort as yarns shift</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shrinks when washed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not durable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>breaks during wear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>open weave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>easily distorted with wear and washing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stretches in one direction only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fiber Evidence

• Quality depends on the **ability** of the criminalist to identify:
 - the **origin** of the fiber
 - narrow the **possibilities** to a limited # of sources

• Obviously, if the examiner is presented with fabrics that can be **exactly fitter together** at their torn edges, it is a virtual certainty that the fabrics were of **common origin**
Fiber Evidence

- **Microscopic** comparisons
 - Between questioned and standard/reference fibers
 - Initially taken for **color** and **diameter** characteristics, using a comparison microscope.
Fiber Evidence

• Other **morphological features** that could be important in comparing fibers are:
 • Lengthwise striations on the surface of the fiber.
 • The presence of delustering particles that reduce shine.
 • The cross-sectional **shape** of the fiber.

• Compositional **differences** may exist in the dyes that were applied to the fibers during the manufacturing process.
Sampling and Testing

- **Gathering** evidence
 - Special vacuums
 - Sticky tape
 - **Tweezers**

- **Nondestructive Analysis**
 - **Microscopes** – reveal characteristic shapes and markings
 - Polarizing light microscopy – uses specific wavelengths
 - Infrared spectroscopy - reveals **chemical structures** to differentiate similar fibers
Sampling and Testing

• Destructive Analysis
 • Burning fibers
 • Dissolving fibers in various liquids
• Compare fibers found on different suspects with those found at the crime scene
Fiber Burn Analysis Key

When fiber is removed from flame,

1a. It ceases to burn ... Go to 2
1b. Fiber continues to burn .. Go to 3
2a. Fibers have the odor of burning hair Go to 4
2b. Fibers do not smell like hair ... polyester
3a. Fibers produce a small amount of light ash residue rayon
3b. Fibers produce a gray fluffy ash ... cotton
4a. A hard black bead results from burning wool
4b. A brittle, black residue results .. silk
Collection and Preservation

- The investigator’s task of looking for minute strands of fibers often becomes one of identifying and preserving potential “carriers” of fiber evidence.
- Relevant articles of clothing should be packaged carefully in separate paper bags.
Collection and Preservation

- If it is necessary to remove a fiber from an object, the investigator must use clean forceps, place it in a small sheet of paper, fold and label the paper, and place the paper packet inside another container.
Summary

• Fibers are a form of **class** evidence.
• Fibers are a form of **trace** evidence.
• Fibers are spun into **yarns** having specific characteristics.
• Yarns are woven, with different **patterns** into clothing or textiles.
• Fiber **evidence** is gathered using different techniques.
Summary

• Fibers are analyzed using burn tests, tests for solubility in different solutions, polarized light microscopy, or infrared spectroscopy.
• Fibers are classified as natural or synthetic
• Natural fiber sources include:
 • Animal hair
 • Plant seeds, fruit, stems, or leaves
 • Minerals