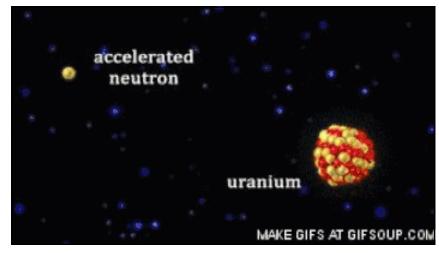


Types of Nuclear Reactions

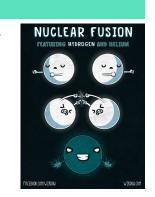

Natural Transmutation	Artificial Transmutation
Alpha decay	Fission (atomic bomb)
Beta decay	Fusion (new technology)
Positron decay	
Fusion (energy from the sun)	

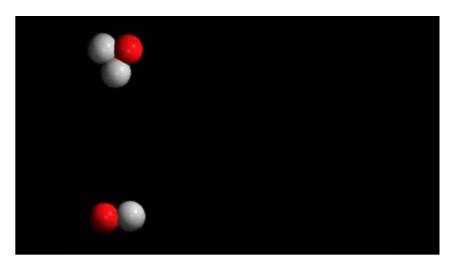
2

Fission

- Artificial transmutation = man made
- Fission = splitting of heavy element (large nucleus)
- Heavy element + neutron \rightarrow 2 middle weight nuclei + 1 or more neutrons + energy
- Example:

$$^{235}_{92}$$
U + $^{1}_{0}n$ ----- $^{142}_{56}$ Ba + $^{91}_{36}$ Kr + $3^{1}_{0}n$ + energy



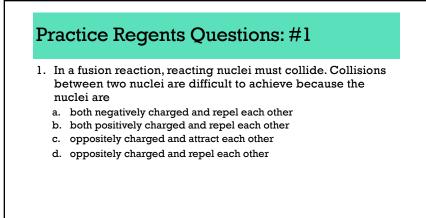

Fusion

- Combines light element to produce a heavier one
- In the sun
- Example:

$${}^{1}_{1}H + {}^{1}_{1}H - {}^{2}_{1}H + {}^{0}_{+1}\Theta$$

 ${}^{1}_{1}H + {}^{2}_{1}H - {}^{3}_{2}He$

6


Fission vs. Fusion • Nucleus splits • Reactions produce energy • Mass is converted into energy • Splits • nuclei unite • gives much more energy than fission

Radioisotopes	
Benefits	Risks
 Tracers Medical: radioactive iodine can be used to diagnose and treat thyroid. Food can be stored longer. Nuclear Power Radioactive dating U-238 and Pb-206 are used for geological dating. C-14 used for dating living material. 	 Biological Damage: damage or destroy cells Long Term Storage Accidents: nuclear explosion Pollution: nuclear waste

8

7

5

9

11

2. Given the fusion reaction: ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow X + energy$ Which particle is represented by X? a. ${}_{1}^{1}H$ b. ${}_{2}^{3}He$ c. ${}_{1}^{3}He$ d. ${}_{2}^{4}He$

Practice Regents Questions: #2

10

Practice Regents Questions: #3

- 3. Which change takes place in a nuclear fusion reaction?
 - a. Matter is converted to energy.
 - b. Energy is converted to matter.
 - c. Ionic bonds are converted to covalent bonds.
 - d. Covalent bonds are converted to ionic bonds.

Practice Regents Questions: #4

4. Nuclear fusion differs from nuclear fission because nuclear fusion reactions

- a. form heavier isotopes from lighter isotopes
- b. form lighter isotopes from heavier isotopes
- c. convert mass to energy
- d. convert energy to mass

Practice Regents Questions: #5

5. A nuclear fission reaction and a nuclear fusion reaction are similar because both reactions

- a. form heavy nuclides from light nuclides
- b. form light nuclides from heavy nuclides
- c. release a large amount of energy
- d. absorb a large amount of energy

13

Practice Regents Questions: #7 7. Which statement explains why nuclear waste materials may pose a problem? a. They frequently have short half-lives and remain radioactive for brief periods of time. b. They frequently have short half-lives and remain radioactive for extended periods of time. c. They frequently have long half-lives and remain radioactive for brief periods of time. d. They frequently have long half-lives and remain radioactive for an extended period of time

Practice Regents Questions: #6

6. In which reaction is mass converted to energy by the process of fission?

a.
$$\frac{14}{7}N + \frac{1}{0}n \rightarrow \frac{14}{6}C + \frac{1}{1}H$$

b. $\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{87}{35}Br + \frac{146}{57}La + 3\frac{1}{0}n$
c. $\frac{226}{88}Ra \rightarrow \frac{226}{88}Ra + \frac{4}{2}He$
d. $\frac{2}{1}H + \frac{2}{1}H \rightarrow \frac{4}{2}He$

14