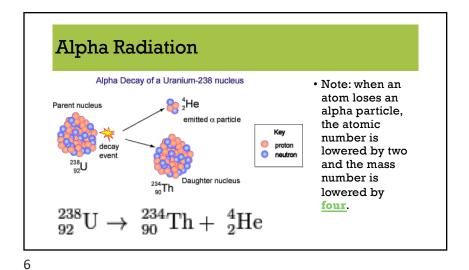
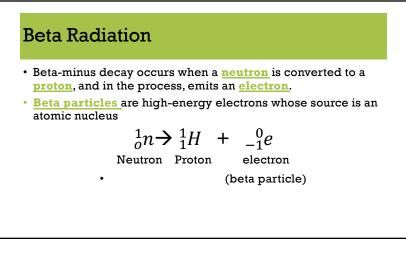


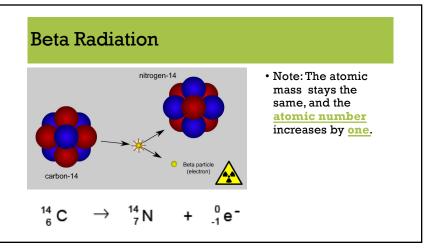
Nuclear Reactions vs. Chemical Reactions

- **Chemical Reactions**
- 1. Atoms are rearranged by
- Atoms are rearranged by the breaking and formation of bonds.
 Only electrons are involved in the breaking or forming of bonds.
 <u>Small</u> amounts of energy are absorbed or released
 Rates of reaction are influenced by temperature
- temperature, concentration, pressure, and catalysts.

Nuclear Reactions

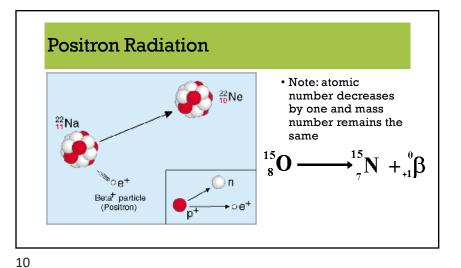

- 1. Elements are converted from one type to another.
- 2. Protons, neutrons, electrons, and other subatomic particles are involved.
- Large amounts of energy 3. are absorbed or released.
- 4. Rates are not affected by temperature, pressure, or catalysts.


Radioisotopes


- The nuclei of some unstable isotopes, called radioactive isotopes or radioisotopes, split up forming atoms with a different number of protons and releasing radiation.
- This process is called radioactive decay.
- · Radioactivity is the release of energy and matter that results from changes in the nucleus of an atom

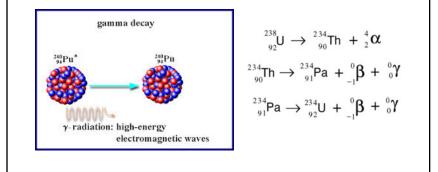
Alpha Radiation

- An <u>alpha particle</u> is a positively charged particle identical to the helium nucleus
- Alpha decay occurs when the nucleus of an atom gives off an alpha particle—<u>two protons</u> and <u>two neutrons</u>.

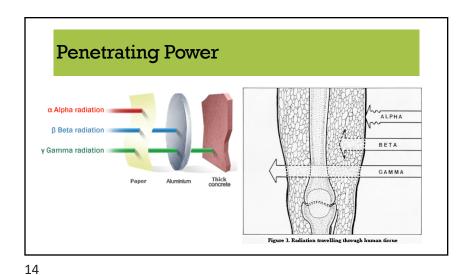


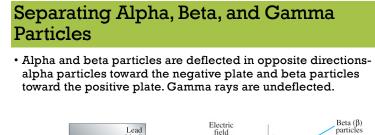
Positron Radiation

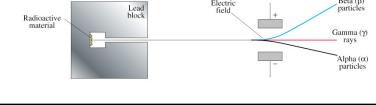
- Beta-plus decay (also called positron emission) occurs when a <u>proton</u> is converted to a <u>neutron</u>, and in the process, emits a positively charged electron (a positron).
- A <u>positron</u> is a particle identical to an electron except that it has a positive charge

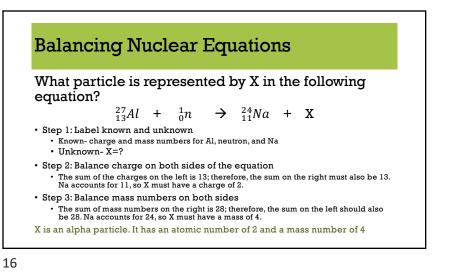


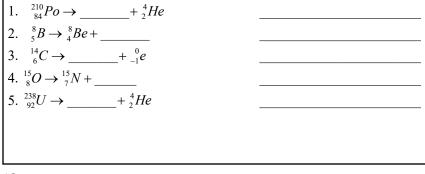
9


Gamma Radiation


- A <u>gamma ray</u> is a high-energy photon emitted by a radioisotope. Often are emitted along with alpha and beta particles.
- Gamma radiation doesn't have a positive or negative charge. Gamma rays are similar to X-rays, but they have even greater energy. Gamma radiation can only be stopped by a thick layer of lead or concrete.


Gamma Radiation





C		
Symbols Use	Table O d in Nuclear Che	mistry
Name	Notation	Symbol
alpha particle	4_2 He or ${}^4_2\alpha$	α
beta particle	$^{0}_{-1}e \text{ or }^{0}_{-1}\beta$	β-
gamma radiation	ο _ο γ	γ
neutron	$\frac{1}{0}n$	n
proton	$^{1}_{1}H$ or $^{1}_{1}p$	р
positron	$^{0}_{+1}e \text{ or }^{0}_{+1}\beta$	β+

17

Summa	ry			
Property	Alpha Radiation	Beta Radiation	Gamma Radiation	Positron Radiation
Composition	Alpha particle (helium nucleus)	Beta particle (electron)	High-energy electromagneti c radiation	Positron particle
Symbol	⁴ ₂ He, ⁴ ₂ α,	β, _1 ⁰ e	Ŷ	0e
Charge	2+	1-	0	1+
Mass (amu)	4	1/1837	0	1/1837
Common Source	Radium-226	Carbon-14	Cobalt-60	
Penetrating Power	Low	Moderate	Very High	Very low
Shielding	Paper, clothing	Metal foil	Lead, concrete	

Balancing Nuclear Reaction Practice

18

Nuclear Decay Regents Practice Hint: Use Table N and O to help you! Question 1: A sample of which radioisotope emits particles having the greatest mass

- a. ¹³⁷Cs
- b. ⁵³Fe
- **c.** ²²⁰Fr
- d. ³H

Nuclear Decay Regents Practice Hint: Use Table N and O to help you!

Question 2: Given the equation representing a nuclear reaction in which X represents a nuclide:

$$^{232}_{90}$$
Th $\rightarrow ^{4}_{2}$ He + X

Which nuclide is represented by X?

a.
$$^{236}_{92}$$
Ra b. $^{228}_{88}$ Ra c. $^{236}_{92}$ U d. $^{228}_{88}$ U

Nuclear Decay Regents Practice Hint: Use Table N and O to help you!

Question 3: Positrons and beta particles have

- a. The same charge and the same mass
- The same charge and different masses b.
- c. Different charges and the same mass
- d. Different charges and different masses

21

Nuclear Decay Regents Practice Hint: Use Table N and O to help you!

Question 4: Which two radioisoptes have the same decay mode

- a. ³⁷Ca and ⁵³Fe
- b. ²²⁰Fr and ⁶⁰Co
- c. 37 K and 42 K
- d. ⁹⁹Tc and ¹⁹Ne

Nuclear Decay Regents Practice Hint: Use Table N and O to help you!

Question 5: Which nuclear emission has the greatest penetrating power?

- a. Proton
- b. Beta particle
- c. Gamma radiation
- d. Positron