\qquad
\qquad
\qquad
Teacher: \qquad Period: \qquad Class: \qquad

Unit 6: Gases

The following pages are practice questions for this unit, and will be submitted for homework!

You must complete:

- Gas Law Graphic Organizer - ALL QUESTIONS
- Setting the Stage - Basic Info and Conversions - ALL QUESTIONS
- Boyle's Law Graph/Practice Questions - ALL QUESTIONS
- Charles' Law Graph/Practice Questions - ALL QUESTIONS
- Gay-Lussac's Law Graph/Practice Questions - ALL QUESTIONS
- Combined Gas Law Practice - ALL QUESTIONS
- Ideal Gas vs. Real Gas and the KMT - ALL QUESTIONS

DUE: Friday February 7, 2020

\qquad
\qquad Date: \qquad
Teacher: \qquad Period: \qquad Class: \qquad

Gas Law Graphic Organizer

Directions: Fill in the table below to review and summarize all three gas laws.

Gas Law	Variables Studied	Equation	Relationship	Graph
Boyle's Law				
Charles' Law				
Gay-Lussac's Law				

Setting the Stage...Basic Info and Conversions

- STP stands for:
- If a question asks for pressure at STP, it is \qquad or \qquad
- Other units of pressure
- Torr: \qquad torr $=1 \mathrm{~atm}$
- mmHg: \qquad $\mathrm{mmHg}=\mathrm{atm}$
- If a question asks for temperature at STP, it is \qquad or \qquad
- When using gas laws, we need to use \qquad when dealing with temperature.
- How to Convert to Kelvin: \qquad
- $-56^{\circ} \mathrm{C}=$ \qquad
- $198^{\circ} \mathrm{C}=$ \qquad
- $273^{\circ} \mathrm{C}=$ \qquad
- $0^{\circ} \mathrm{C}=$ \qquad
- How to Convert to Celsius:
- $273 \mathrm{~K}=$ \qquad
- $0 \mathrm{~K}=$ \qquad
- $82 \mathrm{~K}=$ \qquad
- $621 \mathrm{~K}=$ \qquad
Unit 6: Gases - Homework Packet
\qquad Official Class: \qquad Date: \qquad
Teacher: \qquad Period: \qquad Class: \qquad

Boyle's Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between pressure and volume. Answer the questions based on the graph. Pressure should be the X -axis and volume should be the Y -axis.

X-Axis	Y-Axis
Pressure (mmHg)	Volume (mL)
1250	380
650	760
350	1520
250	2280
200	3040
170	3800
150	4560

1. What is the type of relationship shown in this graph above? \qquad
Directions: Use Boyle's Law to answer the following questions.
2. A container holds $500 . \mathrm{mL}$ of CO_{2} gas at 742 torr. What will be the volume of the CO_{2} gas if the pressure is increases to 795 torr?
3. A gas tank holds 2785 L of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, at 830 mmHg . What is the volume of the propane at standard pressure?
4. A balloon contains 7.2 L of He . The pressure is reduced to 2.00 atm and the balloon expands to occupy a volume of 25.1 L . What is the initial pressure exerted on the balloon?
5. A sample of neon occupies a volume of 461 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa ?
6. 352 mL of chlorine under a pressure of 680 mmHg are placed in a container under a pressure of 1210 mmHg . What is the volume of the container in liters?
\qquad
\qquad Date: \qquad
Teacher: \qquad Period: \qquad Class: \qquad

Charles' Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between temperature and volume. Answer the questions based on the graph. Temperature should be the X -axis and volume should be the Y -axis.

X-Axis	Y-Axis
Temperature (K)	Volume (mL)
700	1425
601	1227
499	1023
401	827
300	625
199	423
100	225

2. What is the type of relationship shown in this graph above? \qquad

Directions: Use Charles' Law to answer the following questions.

1. A gas occupies 1.00 L at standard temperature. What is the volume at $330.0^{\circ} \mathrm{C}$?
2. At 300 K a gas has a volume of 6.00 L . What will the volume be at 423 K ?
3. At 498 K a gas has a volume of 400.0 mL . What is the volume of this gas at 400 K ?
4. Calculate the decrease in temperature when 2.00 L at 293 K is compressed to 1.00 L .
5. What is the initial temperature of 900 mL of gas before it was compressed to 423 mL with a temperature of 293 K ?
\qquad
\qquad Date: \qquad
Teacher: \qquad Period: \qquad Class: \qquad

Gay-Lussac's Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between temperature and pressure. Answer the questions based on the graph. Temperature should be the X -axis and pressure should be the Y -axis.

X-Axis	Y-Axis
Temperature (K)	Pressure (atm)
125	0.2632
175	0.3947
225	0.5263
325	0.7895
425	1.0526
475	1.1842

3. What is the type of relationship shown in this graph above? \qquad
Directions: Use Gay-Lussac's Law to answer the following questions.

1. A gas has a pressure of 0.370 atmospheres at $50.0^{\circ} \mathrm{C}$, what is the pressure at standard temperature?
2. Determine the pressure when a constant volume of gas at latm is heated from 270 K to 280 K .
3. If a gas in a closed container is pressurized from 15 atm to 16 atm and its original temperature was 200 K , what is the final temperature of the gas?
4. A sample of gas at $1.65 \times 10^{2} \mathrm{mmHg}$ inside a steal tank is cooled from $240^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, what is the final pressure inside the steel tank?
5. Calculate the final pressure inside a scuba tank after is cools from $1.00 \times 10^{3}{ }^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$. The initial pressure in the tank is 130.0 atm .
\qquad
\qquad Date: \qquad
Teacher: \qquad Period: \qquad Class: \qquad

Combined Gas Law Practice

Directions: Use the Combined Gas Law to answer the following questions.

1. If \qquad is constant, you use Boyle's Law and use the formula \qquad .
2. If \qquad is constant, you use Charles' Law and use the formula \qquad .
3. If \qquad is constant, you use Gay-Lussac's Law and use the formula \qquad .
4. A 28.4 L sample of nitrogen inside a rigid, metal container at $51^{\circ} \mathrm{C}$ is placed inside an oven whose temperature is $254^{\circ} \mathrm{C}$. The pressure inside the container at $51^{\circ} \mathrm{C}$ was 2.7 atm . What is the pressure of the nitrogen after the temperature is increased?
5. A has a temperature of $14^{\circ} \mathrm{C}$, and a volume of 4.5 liters. If the temperature is raised to $29^{\circ} \mathrm{C}$ and the pressure is held constant. What is the new volume of the gas?
6. If 1.00 L of argon gas is originally at STP, and the pressure was then increased to 304.2 kPa , what is the final temperature of the gas?

Ideal Gas vs. Real Gas \& the KIMT

