

The following pages are practice questions for this unit, and will be submitted for homework!

You must complete:

- Gas Law Graphic Organizer ALL QUESTIONS
- Setting the Stage Basic Info and Conversions ALL QUESTIONS
- Boyle's Law Graph/Practice Questions ALL QUESTIONS
- Charles' Law Graph/Practice Questions ALL QUESTIONS
- Gay-Lussac's Law Graph/Practice Questions ALL QUESTIONS
- Combined Gas Law Practice ALL QUESTIONS
- Ideal Gas vs. Real Gas and the KMT ALL QUESTIONS

DUE: Friday February 7, 2020

Name:	Official Class:	Date:
Teacher:	Period:	Class:

Gas Law Graphic Organizer

Directions: Fill in the table below to review and summarize all three gas laws.

Gas Law	Variables Studied	Equation	Relationship	Graph
Boyle's Law				
Charles' Law				
Gay-Lussac's Law				

Setting the Stage...Basic Info and Conversions

STP stands for:

•	If a question asks for pressure at STP, it is	or	

- Other units of pressure
 - Torr: _____ torr = 1 atm
 - mmHg: _____ mmHg = atm
- If a question asks for temperature at STP, it is ______ or _____ •
- When using gas laws, we need to use ______ when dealing with temperature. •
 - How to Convert to Kelvin:
 - -56 °C = _____ • 273 °C = _____ • 0 °C =
 - 198 °C = ____
 - How to Convert to Celsius:
 - 273 K = _____ • 82 K = _____ • 621 K =
 - 0 K =

Name:	Official Class:	Date:
Teacher:	Period:	Class:

Boyle's Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between pressure and volume. Answer the <u>questions based on the graph. Pressure should be the X-axis and volume should be the Y-axis.</u>

X-Axis	Y-Axis
Pressure (mmHg)	Volume (mL)
1250	380
650	760
350	1520
250	2280
200	3040
170	3800
150	4560

		_			_
 	 	-			_
 	_	_			-
	-	_			
	-	-		-	-
 	 		_		_
 	 		_		_
 			_		_
 	 		_		
		_	_		-
 					_
 			_		_
 	 	_			-

1. What is the type of relationship shown in this graph above?

Directions: Use Boyle's Law to answer the following questions.

- 1. A container holds 500. mL of CO_2 gas at 742 torr. What will be the volume of the CO_2 gas if the pressure is increases to 795 torr?
- 2. A gas tank holds 2785 L of propane, C_3H_8 , at 830 mmHg. What is the volume of the propane at standard pressure?
- 3. A balloon contains 7.2 L of He. The pressure is reduced to 2.00 atm and the balloon expands to occupy a volume of 25.1 L. What is the initial pressure exerted on the balloon?
- 4. A sample of neon occupies a volume of 461 mL at STP. What will be the volume of the neon when the pressure is reduced to 93.3 kPa?
- 5. 352 mL of chlorine under a pressure of 680 mmHg are placed in a container under a pressure of 1210 mmHg. What is the volume of the container in liters?

Name:	_ Official Class:	Date:
Teacher:	Period:	Class:

Charles' Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between temperature and volume. Answer the questions based on the graph. Temperature should be the X-axis and volume should be the Y-axis.

X-Axis	Y-Axis
Temperature (K)	Volume (mL)
700	1425
601	1227
499	1023
401	827
300	625
199	423
100	225

	<u> </u>	 _	
		++	 _
		+	 _
			_

2. What is the type of relationship shown in this graph above?

Directions: Use Charles' Law to answer the following questions.

- 1. A gas occupies 1.00 L at standard temperature. What is the volume at 330.0 °C?
- 2. At 300 K a gas has a volume of 6.00 L. What will the volume be at 423 K?
- 3. At 498K a gas has a volume of 400.0 mL. What is the volume of this gas at 400 K?
- 4. Calculate the decrease in temperature when 2.00 L at 293 K is compressed to 1.00 L.
- 5. What is the initial temperature of 900 mL of gas before it was compressed to 423 mL with a temperature of 293 K?

Name:	Official Class:	Date:
Teacher:	Period:	Class:

Gay-Lussac's Law Graph/Practice Questions

Directions: Use the following data to graph the relationship between temperature and pressure. Answer the questions based on the graph. Temperature should be the X-axis and pressure should be the Y-axis.

X-Axis	Y-Axis
Temperature (K)	Pressure (atm)
125	0.2632
175	0.3947
225	0.5263
325	0.7895
425	1.0526
475	1.1842

	Image: state stat

3. What is the type of relationship shown in this graph above?

Directions: Use Gay-Lussac's Law to answer the following questions.

- 1. A gas has a pressure of 0.370 atmospheres at 50.0 $^\circ$ C, what is the pressure at standard temperature?
- 2. Determine the pressure when a constant volume of gas at 1 atm is heated from 270 K to 280K.
- 3. If a gas in a closed container is pressurized from 15 atm to 16 atm and its original temperature was 200 K, what is the final temperature of the gas?
- 4. A sample of gas at 1.65 x 10² mmHg inside a steal tank is cooled from 240 °C to 0 °C, what is the final pressure inside the steel tank?
- 5. Calculate the final pressure inside a scuba tank after is cools from 1.00 x 10³ °C to 25.0 °C. The initial pressure in the tank is 130.0 atm.

Name:	Official Class: Date:		
Teacher:			
	Combined Gas Law Practice		
Directions: Use the Combined C	Sas Law to answer the following questions.		
1. If	is constant, you use Boyle's Law and use the formula		
2. If	_ is constant, you use Charles' Law and use the formula		
3. If	_ is constant, you use Gay-Lussac's Law and use the formula		

- 4. A 28.4L sample of nitrogen inside a rigid, metal container at 51°C is placed inside an oven whose temperature is 254 °C. The pressure inside the container at 51 °C was 2.7 atm. What is the pressure of the nitrogen after the temperature is increased?
- 5. A has a temperature of 14 °C, and a volume of 4.5 liters. If the temperature is raised to 29 °C and the pressure is held constant. What is the new volume of the gas?
- 6. If 1.00 L of argon gas is originally at STP, and the pressure was then increased to 304.2 kPa, what is the final temperature of the gas?

Ideal Gas vs. Real Gas & the KMT

The Kinetic Molecular Theory States that all ideal gas particles			