11-11							
Name: KEY	Official Class:	_Date:					
Teacher:	Period:Class:						
Ultimate Thermochemistry Review							
Part 1: Analyze It!							
Directions: Students in a chemistry lead to conducted the following experiments	Hooting Common of Mantanian	Substance X					
They started with a mysterious	85	4.5					
compound in the solid phase. They	80						
placed the solid substance in a	75						
beaker and placed it on a hot plate.	65	V					
They measured the temperature of the contents every 2 minutes. Below	60	IV					
Same assessed and the Automotive Williams of the	55 50	TV P					
following questions based on their	9 45						
data and graph.	O						
	70 35 III						
1. What is the melting point of	25						
the substance?	5 20 M						
2. At what time does the	15						
substance begin to melt?	5 11						
4 min	0 1						
	-5						
3. How long does it take for the	15						
substance to completely melt?	0 2 (4) 6 (8) 10 12 14 16 18	 					
8-4 = 4mins	0 2 4 6 8 10 12 14 16 18	20 22 24 26 928 30					
	Time (minutes	N .					
4. How many phases are present		,					
between 0 min and 4 min? What		w ** **					
1 phase - solid							
	d kinetic energy between 0 min and 4 min?						
KE T & PEconsto	ant						
6. How many phases are present be	tween 4 min and 8 min? What phase(s) is/a	re present?					
a phases liqui	d & soll o						
7. What happens to the potential and	I kinetic energy between 4 min and 8 min?						
KE constant &	PET						
	liquid is present according to the graph?						
	22-4 = 16 mins total						
9. How many phases are present between 8 min and 18 min? What phase(s) is/are present?							
ON PMSe - LIQUID 10. What happens to the potential and kinetic energy between 8 min and 18 min?							
KET & PE Constant.							
11. At what time does the gas phase first appear?							
@ min 1	K						
	ween 18 min and 22 min? What phase(s) is	·/					
		ware present:					
2 phoses liqui							
13. What happens to the potential and	kinetic energy between 18 min and 22 min	n?					
KE constant & PE	1						
14. How long is this substance only a g	ras?						
22 - 17 - 6 min							
22min > 27min 27-17 = 5min							
15. What is the boiling point of the substance?							
55°C							
16. How many phases are present between 22 min and 27 min? What phase(s) is/are present?							
1/phase - 905							
17. What happens to the potential and kinetic energy between 22 min and 27 min?							

Na	me:	(E)	Official Class:		
Tea	acher: _	at happens to heat as time progress		Class:	
	he 19. If th	at happens to heat as time progress of 15 added his was a cooling curve, sketch what of in the box to the right.			
	and	a cooling curve, what happens to the kinetic energy on the flat plateaus			
	1 6	V & KEconstant			
		a cooling curve, what happens to the ph? PE constant KE		ergy on the declining slants on the	
	22. Hov	v is a cooling curve different from a	heating curve in terms of	heat?	
		heat is removed		,	
	23. Co	ald this substance be water? Explain	n int dua	1 match water 5	
	1	nd this substance be water? Explain	ulting point and	1 Minter of the 1	
Dia	rt 2: Ca rection: ference 1. How	lculate It! s: Answer the following questions us Table. Show all your work. v many joules of heat energy are ab	sing your knowledge of ch sorbed when 13 grams wa	nemistry as well as your Chemistry ater are heated from 15 °C to 95°C?	
A		9= (139)(1	10 1/g.c) C80 C) = 4347.2 T = 95 20	
	2. Ho	w many joules of heat energy are rel	leased when 52 grams wa	ter are cooled from 85 °C to 25 °C?	
	9=	mest q=152g)(4.1	187/g() (-60°C)	= -13,041.6 J - NT = 25-88 =	
	3. Wh	at is the mass of a sample of ice if 18	J.		
	9	=rnHf	1.01171.	WC	
	4 Hor	w much energy is needed to vaporis	(334 J/g)	m = 5,45 g	
		= mHv = q = /10g) (22)			
	5. Bas	ed the following questions on the in a 10 gram sample of water. Both sa a. Predict: Do you think one sampl sample do you think will require	amples are heated from 10 e will require more energ	0°C to 50°C.	
		CANSWES MAY VARY	1)		
		b. Support your prediction with ev	·	below.	
9=V		q=(5g)(4.18g/Tc)(40=830	1	0g) (4.18 J/gC) (40°C) 71672 J	
1012 10) (TET	her traits aslantiation?		
			160	sample talles thill asmuch	
		(ANSWERS MA)	LY VARY) ex	sample talls twill asmuch	
	6. Bas	ed the following questions on the in	formation provided. A stu	dent has multiple 5 gram samples	
	of p	ure water. a. Predict: Which phase change wi			
				mening of vaporization:	
		200 M	MAY VARY)	1.1	
q=mHf		b. Support your prediction with evi	idence. Snow your work	aportu com	
		q=(5g)(3375/g) -\16	70 3 9 = (5g)(22609/g) = 113005	
		c. Was your prediction supported	by your calculation?	7,37	
IANSWERS MAY VARYS					
Uni	it 8: The	rmochemistry	aku mori eniros	, to vaporize than melt	