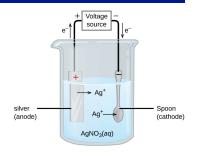


2

Electrolytic Cells

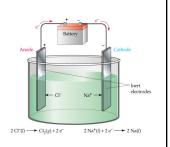
- Reaction cannot occur spontaneously, so electricity is used to force the reaction to occur. In other words, <u>electrical energy</u> is converted to <u>chemical energy</u>.(opposite of voltaic cell)
- When electricity is used to force a chemical reaction to occur, the process is called <u>electrolysis</u>.


Electrolytic Cell Cathode
Electrode where electrons are sent
The negative electrode (opposite of voltaic cell)
Electrode where reduction occurs (red cat)

3

1

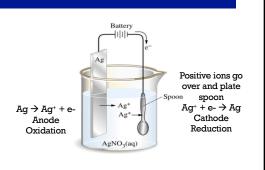
Electrolytic Cell Anode


- Electrode where electrons are drawn away from
- The <u>positive</u> electrode (opposite of voltaic cell)
- Electrode where (oxidation occurs an ox)

Electrolytic Cells: Uses

 To obtain pure elements such as sodium and chlorine by the electrolysis of molten salts.

Ex: $2 \text{ NaCl(l)} \rightarrow 2 \text{Na(s)} + \text{Cl}_2(g)$



5

6

Electrolytic Cells: Uses

2. To electroplate metals onto a surface. The material to be plated with a metal is the cathode. The anode is made of the metal used for the plating.

Compare and Contrast

	Galvanic/Voltaic Cell	Electrolytic Cell
Flow of e- (Spontaneous or Forced)	Spontaneous	Forced
(+) Electrode	Cathode	Anode
(-) Electrode	Anode	Cathode
Direction of e- Flow	Anode to cathode	Anode to cathode
Reduction Half Cell	Cathode	Cathode
Oxidation Half Cell	Anode	Anode

7

2