

1

Half Reaction

- Half reaction shows the exchange of electrons in a redox reaction
- One half reaction shows oxidation, and the other shows reduction

Example of a Reduction Half Reaction

$\cdot \mathrm{Fe}^{3+}+3 \mathrm{e}-\rightarrow \mathrm{Fe}^{0}$

- Electrons on the left side, gained in the reaction
 it produces iron solid Fe (s)

3

Example of an Oxidation Half Reaction

$-\mathrm{Fe}^{0} \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{e}-$

- Electrons are the right hand side, loss of electrons in the reaction
- Always add electrons to the side of the reaction that has a more positive charge

5

Following the Law of Conservation

- Half reactions follow:
- Law of conservation of mass; same \# of atoms on both sides of the reaction
- Conservation of charge; net charge must be the same on both sides of the equation (\# of electrons lost = \# of electrons gained)

Complete the Incomplete Half Reactions

- Rewrite the equation and place the correct number of electrons on the appropriate side
- $\mathrm{I}_{2} \rightarrow 2 \mathrm{I}^{-}$
- $\mathrm{Cr}^{2+} \rightarrow \mathrm{Cr}^{3+}$
- $\mathrm{Sr} \rightarrow \mathrm{Sr}^{2+}$

6

Rules for Setting Up Half Reactions

- Assign numbers

$$
\mathrm{Mg}+\mathrm{ZnCl}_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{Zn}
$$

- Identify oxidation and reduction
- \quad is oxidized because electrons were lost and the oxidation number increased
-___ is reduced because electrons were gained and the oxidation number decreased

Rules for Setting Up Half Reactions

Rules for Setting Up Half Reactions

- Balance masses (change coefficients) and balance charge multiply each half reaction to have the same number of electrons
$\mathrm{Mg}+\mathrm{ZnCl}_{2} \rightarrow \mathrm{MgCl}_{2}+\mathrm{Zn}$
- Reduction Half Reaction:
- Reduction:
- Oxidation Half Reaction:
- Oxidation:

$$
\mathrm{Mn}+\mathrm{Cu}^{+2} \rightarrow \mathrm{Mn}^{+4}+\mathrm{Cu}
$$

$$
\mathrm{Li}+\mathrm{Ca}^{+2} \rightarrow \mathrm{Li}^{+1}+\mathrm{Ca}
$$

13

