

Reduction – **Ox**idation Reactions (REDOX)

• Reactions that involve the <u>transfer of electrons; both</u> <u>reduction and oxidation</u> must happen <u>simultaneously!</u>

Reduction – **Ox**idation Reactions (REDOX)

• Reduction = <u>gain of</u> <u>electrons</u> by an atom or ion; <u>oxidation number goes</u> <u>down/reduces</u>

• Oxidation = <u>loss of</u> <u>electrons by an atom or ion;</u> <u>oxidation number goes</u> <u>up/increases</u>

Identifying Oxidation Numbers

- one way that we can begin to **identify a redox reaction** is to identify the **oxidation** # from reactant to product side (for every element involved in the reaction).
- oxidation numbers are used to track the movement of electrons (electron transfer) from reactant to product side of reaction

Oxidation Number (State)

- positive, negative, or neutral (zero) **values** that can be assigned to atoms
- used to identify how many electrons are being lost or gained by an atom/ion when they form bonds

12.0111

+2

+4

9

10

element

Tricks to Identifying Redox Reactions

- Trick 1: single replacement reactions are always REDOX!
- Example: $Zn + HCl \rightarrow ZnCl_2 + H_2$

Tricks to Identifying Redox Reactions

- Trick 2: double replacement reactions are NOT REDOX!
- Ex: NaOH + HCl \rightarrow NaCl + H₂O

*charges stay the same for all elements in this reaction

Rules for Assigning Oxidation Numbers Rule #1

• Elements that are free or uncombined will be assigned an oxidation charge of 0, this includes diatomic atoms

- Ex. Cu: Oxidation number of Cu is 0
- + Ex. H_2 : Oxidation number of H is the 0

13

14

Rules for Assigning Oxidation Numbers Rule #2

• The oxidation number of a monoatomic ion = the charge of the monoatomic ion

• Ex. S²⁻: Oxidation number is -2

• Ex. Al³⁺: Oxidation number is +3

Rules for Assigning Oxidation Numbers Rule #3

• Group 1 metals *in compounds* are always assigned an oxidation state of +1

15

Rules for Assigning Oxidation Numbers Rule #4

- Group 2 metals in compounds are always assigned an oxidation state of $^{\rm +2}$

Rules for Assigning Oxidation Numbers Rule #5

- Hydrogen (H) has two possible oxidation numbers
 - $\mbox{ }$ +1 when bonded to a nonmetal
 - -1 when bonded to a metal

17

18

Rules for Assigning Oxidation Numbers Rule #6

• Oxygen in compounds are assigned an oxidation state of -2 except when it is a peroxide formula X_2O_2 (then its -1 which is rare)

Rules for Assigning Oxidation Numbers Rule #7

• Fluorine in a compounds always has an oxidation state of -1

19

Rules for Assigning Oxidation Numbers Rule #8

• The sum of the oxidation numbers of all atoms in a polyatomic ion = the charge on the polyatomic ion

Rules for Assigning Oxidation Numbers Rule #9

• The sum of the oxidation numbers if all atoms (or ions) in a neutral compound is 0

21

Assigning Oxidation Number Practice Part 1: Single Elements

- 4. <u>Ar</u>:_____ 1. Al:_____
- 2. Cu: _____
- 3. H₂: _____

5. O₂: _____

6. Zn:

Assigning Oxidation Number Practice Part 1: Single Elements 7. Zn⁺²: _____ 10. Li⁺¹: _____ 8. Cl⁻¹: _____ 11. Te⁻²: _____ 9. Ca⁺²: _____ 12. Ag⁺¹: _____

24

Assigning Oxidation Number Practice Part 2: Elements in Compounds

1. Carbon dioxide (CO₂)

CO ₂	С	0	
Sub	1	1	
Ox #	+4	-2	
Total	+4	-4	

Assigning Oxidation Number Practice Part 2: Elements in Compounds

2. Calcium hydroxide (Ca(OH)₂)

Ca(OH) ₂	Ca	0	н	
Sub				
Ox #				
Total				

26

25

Assigning Oxidation Number Practice Part 2: Elements in Compounds

3. Water (H₂O)

H_2O	н	0	
Sub			
Ox #			
Total			

Assigning Oxidation Number Practice Part 2: Elements in Compounds

4. Magnesium phosphate (Mg₃(PO₄)₂)

Mg3(PO4)2	Mg	Р	0	
Sub				
Ox #				
Total				

Assigning Oxidation Number Practice Part 2: Elements in Compounds

5. Ammonium chloride (NH₄Cl)

NH ₄ Cl	N	н	Cl	
Sub				
Ox #				
Total				

Assigning Oxidation Number Practice Part 2: Elements in Compounds

6. Carbonate ion (CO_3^{2-})

CO32-	С	0	
Sub			
Ox #			-
Total			

30

29

Assigning Oxidation Number Practice Part 3: Regents Questions

1. What are the two oxidation states of nitrogen in NH_4NO_2 ?

- a. +3 and +5
- b. +3 and -5
- c. -3 and +3
- d. -3 and -3

Assigning Oxidation Number Practice Part 3: Regents Questions

2. What is the oxidation number of manganese in $KMnO_4$?

- a. +7
- b. +2
- c. +3
- d. +4

Assigning Oxidation Number Practice Part 3: Regents Questions

3. What is the oxidation state of nitrogen in the compound $NH_4Br?$

- a. -1
- b. +2
- c. -3

d. +4

Assigning Oxidation Number Practice Part 3: Regents Questions

4. What is the oxidation number of sulfur in $Na_2S_2O_3$?

a. -l

b. +2

c. +6

d. +4

34

Assigning Oxidation Number Practice Part 3: Regents Questions

5. Given the balanced equation representing a reaction: $2 \text{ KClO}_{3(s)} \rightarrow 2 \text{ KCl}_{(s)} + 3 \text{O}_{2(q)}$ The oxidation state of chlorine in this reaction changes from a. -1 to +1 b. -1 to +5

c. +1 to -1

d. +5 to -1

Assigning Oxidation Number Practice Part 3: Regents Questions

6. What is the oxidation number of chromium in the chromate ion, $CrO_4^{2-?}$

- a. +6
- b. +2
- c. +3
- d. +8