

Ouestion 1

According to one acid-base theory, water acts as an acid when an H_2O molecule

- a. Accepts an H+
- b. Donates an H+
- c. Accepts an H-
- d. Donates an H-

1

2

Question 2

Given the reaction:

$$HSO_4^- + HPO_4^{2-} \longleftrightarrow SO_4^{2-} + H_2PO_4$$

Which pair represents an acid and its conjugate base?

- a. HSO_4^- and SO_4^{2-}
- b. HSO_4^- and HPO_4^{2-}
- c. SO_4^{2-} and $H_2PO_4^{-}$
- d. SO_4^{2-} and HPO_4^{2-}

Question 3

In the reaction

$$NH_3 + H_2O \longleftrightarrow NH_4^+ + OH^-$$

A conjugate acid-base pair is?

- a. NH_3 and H_2O
- b. NH_3 and $\text{OH}^\text{-}$
- c. H_2O and NH_4^+
- d. H_2O and OH^-

3

Ouestion 4

Given the reaction:

$$H_2O + HCl \leftarrow \rightarrow H_3O^+ + Cl^-$$

The Bronsted-Lowry base for the forward reaction is

- a. H₂O
- b. HCl
- c. H₃O⁺
- d. Cl-

5

6

Question 6

In the reaction $H_2S + NH_3 \leftarrow \rightarrow NH_4^+ + HS^-$, the two Bronsted-Lowry bases are

- a. NH₃ and HS
- b. NH₃ and NH₄⁺
- c. H₂S and NH₃
- d. H₂S and HS⁻

Question 5

Given the equilibrium system:

$$NH_3 + H_2O \longleftrightarrow NH_4^+ + OH^-$$

According to the Bronsted-Lowry theory, the H₂O acts as

- a. A base, by receiving a proton
- b. A base, by donating a proton
- c. An acid, by receiving a proton
- d. An acid, by donating a proton

Question 7

Which is the conjugate acid of HSO₄-?

- a. H_2SO_4
- b. H_3O^+
- c. HSO₃+
- d. SO₄²-

7

8

Question 8

Given the reaction

$$NH_{3(g)} + H_2O_{(l)} \leftarrow \rightarrow NH_4^+_{(aq)} + OH^-_{(aq)}$$

A conjugate acid-base pair is?

- a. $H_2O_{(l)}$ and $NH_4^+_{(aq)}$
- b. $H_2O_{(l)}$ and $NH_{3(g)}$
- c. $NH_{3(g)}$ and $OH_{(aq)}$
- d. $NH_{3(g)}$ and $NH_4^+_{(aq)}$

Question 9

Given the balanced equation representing a reaction:

$$H_2O + HCl \leftarrow \rightarrow H_3O^+ + Cl^-$$

The water molecule acts as a base because it

- a. Donates an H+
- b. Accepts an H+
- c. Donates an OH-
- d. Accepts an OH-

9

Question 10

The conjugate base of NH₄⁺ is

- a. NH₃
- b. OH-
- c. H₂O
- d. H₃O⁺

10

Question 11

The conjugate acid of the HS- ion is

- a. H⁺
- b. S
- c. H₂O
- $d.\ H_2S$

11

12

Question 12

In the reaction:

$$H_2PO_4^- + H_2O \longleftrightarrow H_3PO_4 + OH^-$$

Which pair represents an acid and its conjugate base?

- a. H_2O and H_2PO_4
- b. H_2O and H_3PO_4
- c. H₃PO₄ and OH⁻
- d. H_3PO_4 and H_2PO_4