

1

Question 2

Given the reaction:

$$
\mathrm{HSO}_{4}^{-}+\mathrm{HPO}_{4}{ }^{2-} \leftarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{PO}_{4}
$$

Which pair represents an acid and its conjugate base?
a. HSO_{4}^{-}and $\mathrm{SO}_{4}{ }^{2-}$
b. HSO_{4}^{-}and $\mathrm{HPO}_{4}{ }^{2-}$
c. $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d. $\mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{HPO}_{4}{ }^{2-}$

3

Question 1

According to one acid-base theory, water acts as an acid when an $\mathrm{H}_{2} \mathrm{O}$ molecule
a. Accepts an $\mathrm{H}+$
b. Donates an $\mathrm{H}+$
c. Accepts an H-
d. Donates an $\mathrm{H}-$

Question 3

In the reaction

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

A conjugate acid-base pair is?
a. NH_{3} and $\mathrm{H}_{2} \mathrm{O}$
b. NH_{3} and OH^{-}
c. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4}{ }^{+}$
d. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}

Question 4

Given the reaction:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

The Bronsted-Lowry base for the forward reaction is
a. $\mathrm{H}_{2} \mathrm{O}$
b. HCl
c. $\mathrm{H}_{3} \mathrm{O}^{+}$
d. Cl^{-}

5

Question 6

In the reaction $\mathrm{H}_{2} \mathrm{~S}+\mathrm{NH}_{3} \leftrightarrow \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{HS}^{-}$, the two BronstedLowry bases are
a. NH_{3} and HS^{-}
b. NH_{3} and $\mathrm{NH}_{4}{ }^{+}$
c. $\mathrm{H}_{2} \mathrm{~S}$ and NH_{3}
d. $\mathrm{H}_{2} \mathrm{~S}$ and HS^{-}

7

Question 5

Given the equilibrium system:
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

According to the Bronsted-Lowry theory, the $\mathrm{H}_{2} \mathrm{O}$ acts as
a. A base, by receiving a proton
b. A base, by donating a proton
c. An acid, by receiving a proton
d. An acid, by donating a proton

6

Question 7

Which is the conjugate acid of $\mathrm{HSO}_{4}-$?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{HSO}_{3}{ }^{+}$
d. $\mathrm{SO}_{4}{ }^{2-}$

Question 8

Given the reaction

$$
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

A conjugate acid-base pair is?
a. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ and $\mathrm{NH}_{4}{ }^{+}{ }_{\text {(aq) }}$
b. $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ and $\mathrm{NH}_{3(\mathrm{~g})}$
c. $\mathrm{NH}_{3(\mathrm{~g})}$ and $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
d. $\mathrm{NH}_{3(\mathrm{~g})}$ and $\mathrm{NH}_{4}{ }^{+}($aq $)$

9

Question 10

The conjugate base of $\mathrm{NH}_{4}{ }^{+}$is
a. NH_{3}
b. OH^{-}
c. $\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{H}_{3} \mathrm{O}^{+}$

11

Question 9

Given the balanced equation representing a reaction:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

The water molecule acts as a base because it
a. Donates an $\mathrm{H}+$
b. Accepts an $\mathrm{H}+$
c. Donates an OH-
d. Accepts an OH-

10

Question 11

The conjugate acid of the HS^{-}ion is
a. H^{+}
b. S
c. $\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{H}_{2} \mathrm{~S}$

Question 12

In the reaction:

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-}
$$

Which pair represents an acid and its conjugate base?
a. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
b. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
c. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and OH^{-}
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$

13

