

Acids

- Acids can be strong or weak <u>electrolytes</u> in aqueous solutions.
- Acids (ex: HCl) react with certain metals to produce $H_2(g)$.
- Acids cause color changes in acid-base indicators
 - Blue litmus paper turns red in an acid
 - Phenolphthalein is colorless in an acid
- Acids have a sour taste
- Table K has a list of Common Acids

2

Bases

- Bases can be strong or weak electrolytes in aqueous solutions
- Bases cause color changes in acid-base indicators:
 - Red litmus paper turns blue in a base
 - Phenolphthalein is pink in a base
- Bases feel slippery and taste bitter.
- Table L has a list of Common Bases

Arrhenius Acid

- An Arrhenius acid gives off H^+ (hydrogen ions) in aqueous solutions.
 - Ex: HCl, HBr, H₂SO₄
- The H^+ in solution attaches to H_2O to form H_3O^+ (hydronium ion).
 - $\bullet \operatorname{HCl} + \operatorname{H}_2 \operatorname{O} \xrightarrow{} \operatorname{H}^+ + \operatorname{Cl}^- + \operatorname{H}_2 \operatorname{O} \xrightarrow{} \operatorname{Cl}^- + \operatorname{H}_3 \operatorname{O}^+$

- An Arrhenius base has OH and give off OH⁻ (hydroxide ions) in an aqueous solution.
 - Ex: NaOH, KOH, Ca(OH)₂
- $\bullet \text{ NaOH} \rightarrow \text{Na}^+ + \text{OH}^-$
- Group 1 metals react with water to produce bases.
 2Na(s) + 2H₂O(1) → 2 NaOH(aq) +H₂(g)

Na⁺(aq) + OH⁻(aq)

Check Point Question

Arrhenius acid?

a. HCl

b. NaCl

c. LiOH d. KOH

6

Which substance can be classified as an

Bronsted-Lowry Acids and Bases

9

Bronsted-Lowry Acids and Bases • Water can either be a proton donor (acid) or a proton acceptor (base); water is amphoteric.

Check Point Question

According to the Bronsted-Lowry theory, an acid

- is a.
 - A proton donor, only
- b. A proton acceptor, only
- c. A proton donor and a proton acceptor
- d. Neither a proton donor nor a proton acceptor

14

13

Check Point Question Given the reaction at equilibrium $HSO_4^- + H_2O \leftrightarrow H_3O^+ + SO_4^{2-}$ According to the Bronsted-Lowry theory, the two bases are a. H_2O and H_3O^+ b. H_2O and SO_4^{2-} c. H_3O^+ and $H_2SO_4^$ d. H_3O^+ and SO_4^{2-}

