

YOYO

Using Table K +L, write the complete **balanced** neutralization reaction to the following reactants.

Carbonic acid and potassium hydroxide

1

YOYO

Using Table K +L, write the complete **balanced** neutralization reaction to the following reactants.

Phosphoric acid and sodium hydroxide

Types of Acids and Bases

- HCl produces 1 hydrogen and is called a monoprotic acid
- H_2SO_4 produces 2 hydrogens and is called a diprotic acid
- H_3PO_4 produces 3 hydrogens and is called a triprotic acid
- NaOH produces 1 hydroxide group and is called a monohydroxy base

Concentration: Molarity (Table T)

+ 1 M of HCl gives off 1 mole $\rm H^+/liter$

- + 2 M of HCl gives off 2 mole H^+ /liter
- 1 M H_2SO_4 gives off 2 mole H⁺/liter
- + 2 M H_2SO_4 gives off 4 mole H⁺/liter

Concentration: Molarity (Table T) YOU TRY

- 1 M NaOH gives off ____ mole OH⁻/liter
- 2 M NaOH gives off ____mole OH-/liter
- 2 M Ca(OH)₂ gives off ____ mole OH⁻/liter

5

Titration

- Titration is used to find the molarity of an acid or a base
- MaVa= MbVb (Table T)
- This is done by adding measured volumes of an acid or base of known molarity to a base or acid of unknown molarity until neutralization occurs
- Neutralization is when the number of H+ and OH- are equal and the pH is 7, this is also known as the equivalence point.

Titration

- An acid-base indicator can be used to show when neutralization has occurred.
- The point of neutralization is the endpoint of the titration.

6

The Titration Formula – Table T

• Titration formula (Table T):

 $\mathbf{M}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}} = \mathbf{M}_{\mathbf{B}} \mathbf{V}_{\mathbf{B}}$

- $\mathbf{M}_{\mathbf{A}}$ = molarity of acid (H+)
- $\mathbf{V}_{\mathbf{A}}$ = volume of acid
- M_B = molarity of base (OH-)
- $\mathbf{V}_{\mathbf{B}}$ = volume of base

9

Sample #1

• What is the concentration of a 30 ml sample of HCl if it can be neutralized by 50 ml of 1.2 M of NaOH?

10

Sample #2

• How many milliliters of 3.0 M of H₂SO₄ are needed to neutralize 50 ml of 1.2 M Al(OH)₃?

Practice #1

• Determine the concentration of H₃PO₄ if a 90. ml sample is neutralized by 30. ml of 0.9 M Ca(OH)₂.

Practice #2

- How much 6.0 M $\rm HNO_3$ is needed to neutralize 39 ml of 2.0 M KOH?

Practice #3

• How much 3.0 M NaOH is needed to neutralize 30 ml of .75 M $\rm H_2SO_4?$

13

14

Practice #4

• What is the concentration of 20 ml of LiOH if it is neutralized by 60 ml of 4 M HCl?

Practice #5

• What is the concentration of 60 ml of H₃PO₄ if it is neutralized by 225 ml of 2 M Ba(OH)₂?

Practice #6

• How much 2 M HBr is needed to neutralize 380 ml of 0.1 M $NH_4OH?$

- **Practice** #7
- + You have 50 mL of 1.0 M $\rm H_2SO_4(aq).$ What volume of 0.5 M NaOH would be required to neutralize the acid?

17

Practice #8

• A acid has an H+ concentration of 0.1 M and a volume of 100 mL. What volume of a base with a 0.5 M [OH-] will be required to neutralize the reaction?

