

1

YOYO

Using Table $\mathbf{K}+\mathbf{L}$, write the complete balanced neutralization reaction to the following reactants.

Phosphoric acid and sodium hydroxide

3

YOYO

Using Table $\mathbf{K}+\mathbf{L}$, write the complete balanced neutralization reaction to the following reactants.

Carbonic acid and potassium hydroxide

Types of Acids and Bases

- HCl produces 1 hydrogen and is called a monoprotic acid
- $\mathrm{H}_{2} \mathrm{SO}_{4}$ produces 2 hydrogens and is called a diprotic acid
- $\mathrm{H}_{3} \mathrm{PO}_{4}$ produces 3 hydrogens and is called a triprotic acid
- NaOH produces l hydroxide group and is called a monohydroxy base

Concentration: Molarity (Table T)

- 1 M of HCl gives off 1 mole $\mathrm{H}^{+} /$liter
- 2 M of HCl gives off $2 \mathrm{~mole} \mathrm{H}^{+} /$liter
- $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ gives off 2 mole $\mathrm{H}^{+} /$liter
- $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ gives off 4 mole $\mathrm{H}^{+} /$liter

5

Titration

- Titration is used to find the molarity of an acid or a base
- $\mathrm{MaVa}=\mathrm{MbVb}$ (Table T)
- This is done by adding measured volumes of an acid or base of known molarity to a base or acid of unknown molarity until neutralization occurs
- Neutralization is when the number of $\mathrm{H}+$ and OH - are equal and the pH is 7 , this is also known as the equivalence point.

Concentration: Molarity (Table T) YOU TRY

- 1 M NaOH gives off mole $\mathrm{OH}^{-} /$liter
- 2 M NaOH gives off mole $\mathrm{OH}^{-/ l i t e r}$
- $2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ gives off \qquad mole $\mathrm{OH}^{-} / \mathrm{liter}$

Titration

- An acid-base indicator can be used to show when neutralization has occurred.
- The point of
neutralization is the endpoint of the titration.

7

The Titration Formula - Table T

- Titration formula (Table T):
$\mathbf{M}_{\mathrm{A}} \mathbf{V}_{\mathbf{H}}=\mathbf{M}_{\mathrm{B}} \mathbf{V}_{\mathrm{B}}$
- $\mathbf{M}_{\mathbf{A}}=$ molarity of acid (H+)
- $\mathbf{V}_{\mathbf{A}}=$ volume of acid
- $\mathbf{M}_{\mathbf{B}}=$ molarity of base (OH-)
- $\mathbf{V}_{\mathbf{B}}=$ volume of base

9

Sample \#2

- How many milliliters of 3.0 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to neutralize 50 ml of $1.2 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}$?

Sample \#1

- What is the concentration of a 30 ml sample of HCl if it can be neutralized by 50 ml of 1.2 M of NaOH ?

Practice \#1

- Determine the concentration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ if a $90 . \mathrm{ml}$ sample is neutralized by $30 . \mathrm{ml}$ of $0.9 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$.

Practice \#2

- How much $6.0 \mathrm{M} \mathrm{HNO}_{3}$ is needed to neutralize 39 ml of 2.0 M КОН?

Practice \#3

- How much 3.0 M NaOH is needed to neutralize 30 ml of .75 M $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Practice \#5

- What is the concentration of 60 ml of $\mathrm{H}_{3} \mathrm{PO}_{4}$ if it is neutralized by 225 ml of $2 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$? by 60 ml of 4 M HCl ?

Practice \#6

- How much 2 M HBr is needed to neutralize 380 ml of 0.1 M $\mathrm{NH}_{4} \mathrm{OH}$?

Practice \#7

- You have 50 mL of $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. What volume of 0.5 M NaOH would be required to neutralize the acid?

Practice \#8

- A acid has an $\mathrm{H}+$ concentration of 0.1 M and a volume of 100 mL . What volume of a base with a 0.5 M [OH-] will be required to neutralize the reaction?

19

20

