\qquad

1. In a titration, 5.0 mL of a $2.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution exactly neutralizes 10.0 mL of an $\mathrm{HCl}(\mathrm{aq})$ solution. What is the concentration of the $\mathrm{HCl}(\mathrm{aq})$ solution?
A) 1.0 M
B) 2.0 M
C) $10 . \mathrm{M}$
D) $20 . \mathrm{M}$
2. In a titration, 20.0 milliliters of a $0.150 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ solution exactly neutralizes 24.0 milliliters of an $\mathrm{HCl}(\mathrm{aq})$ solution. What is the concentration of the $\mathrm{HCl}(\mathrm{aq})$ solution?
A) 0.125 M
B) 0.180 M
C) 0.250 M
D) 0.360 M
3. Which process is used to determine the concentration of an acid?
A) chromatography
B) distillation
C) electrolysis
D) titration
4. Which volume of $2.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is needed to completely neutralize 24 milliliters of $1.0 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$?
A) 6.0 mL
B) 12 mL
C) 24 mL
D) 48 mL
5. How many milliliters of $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to exactly neutralize 100 . milliliters of $0.300 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
A) 25.0 mL
B) 50.0 mL
C) $100 . \mathrm{mL}$
D) $200 . \mathrm{mL}$
6. The following data were collected by a student performing an acid-base titration:

Volume of the acid, $\mathrm{HCl}=20.0 \mathrm{ml}$
Molarity of the acid $=0.50 \mathrm{M}$
Volume of the base, $\mathrm{NaOH}=40.0 \mathrm{ml}$
From the collected data, the concentration of the base should be calculated as
A) 1.0 M
B) 2.0 M
C) 0.25 M
D) 0.50

Base your answers to questions $\mathbf{7}$ through $\mathbf{1 0}$ on the information below and on your knowledge of chemistry.
A student is to determine the concentration of an $\mathrm{NaOH}(\mathrm{aq})$ solution by performing two different titrations. In a first titration, the student titrates 25.0 mL of $0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ with $\mathrm{NaOH}(\mathrm{aq})$ of unknown concentration.

In a second titration, the student titrates 25.0 mL of $0.100 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ with a sample of the $\mathrm{NaOH}(\mathrm{aq})$. During this second titration, the volume of the $\mathrm{NaOH}(\mathrm{aq})$ added and the corresponding pH value of the reaction mixture is measured. The graph below represents the relationship between pH and the volume of the $\mathrm{NaOH}(\mathrm{aq})$ added for this second titration.

7. State the color of phenolphthalein indicator if it were added after the $\mathrm{HCI}(\mathrm{aq})$ was titrated with $50 . \mathrm{mL}$ of $\mathrm{NaOH}(\mathrm{aq})$.
8. Based on the graph, determine the volume of $\mathrm{NaOH}(\mathrm{aq})$ used to exactly neutralize the $\mathrm{HCl}(\mathrm{aq})$.
9. Complete the equation below for the neutralization that occurs in the first titration by writing a formula of the missing product.
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+$ \qquad (aq)
10. Identify the positive ion present in the $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ solution before the titration.

Base your answers to questions $\mathbf{1 1}$ and $\mathbf{1 2}$ on the information below and on your knowledge of chemistry.
$\mathrm{ANaOH}_{(\mathrm{aq})}$ solution and an acid-base indicator are used to determine the molarity of an $\mathrm{HCl}(\mathrm{aq})$ solution. A 25.0-milliliter sample of the $\mathrm{HCl}(\mathrm{aq})$ is exactly neutralized by 15.0 milliliters of $0.20 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$.
11. Using the data, determine the concentration of the $\mathrm{HCl}(\mathrm{aq})$.
12. Complete the equation for the neutralization reaction that occurs, by writing a formula for each product.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow
$$

\qquad $+$ \qquad

