

Endothermic Example $A + B \rightarrow C$

- If H_{A} = 40 kJ and H_{B} = 20 kJ, then the reactants have a total or 60 kJ
- If $H_{\rm C}$ = 110 kJ, then 50 kJ of heat must have been absorbed by the reactants.
 - (110-60 = 50kJ)
 - Rewritten: $A + B + 50 \text{ kJ} \rightarrow C$
- Total energy on both sides are equal (law of conservation of energy)

4

Exothermic Example $A + B \rightarrow C$

- If $H_A = 60$ kJ and $H_B = 40$ kJ, then the reactants have a total of 100 kJ
- If $H_C = 30$ kJ, then 70 kJ of heat must be released as a product • (100-30 = 70)
 - Rewritten: $A + B \rightarrow C + 70 \text{ kJ}$
- Total energy on both sides are equal (law of conservation of energy)

6

8

Ouestion: What if the reaction is the opposite of what it says on Table I?

- What is the ΔH of the following reaction? Is this exothermic or endothermic?
 - $2H_2O_{(l)} \rightarrow 2H_{2(g)} + O_{2(g)}$
 - Table I says: $2H_{2(g)} + O_{2(g)} \rightarrow$ $2H_2O_{(l)}[\Delta H = -571.6]$
- Answer: +571.6 kJ (endothermic)
 - * For reverse reactions, switch the signs of ΔH

Sample Problem: #1

Given the reaction 2CO_(g) + O_{2(g)} → 2CO_{2(g)} ΔH = -556.0 kJ
 How much heat would be released is 4 moles of carbon monoxide were consumed by oxygen?

9

10

Enthalpy Practice Questions

1. According to Table *I*, which equation represents a change resulting in the greatest quantity of energy released?

A)
$$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$$

B) $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$
C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

D)
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

Enthalpy Practice Questions

- 2. In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is equal to the
 - A) activation energy
 - B) entropy of the system
 - C) heat of fusion
 - D) heat of reaction

13

Enthalpy Practice Questions

3. Given the balanced equation representing a reaction:

 ${\rm H}_2 \rightarrow {\rm H} + {\rm H}$

What occurs during this reaction?

- A) Energy is absorbed as bonds are formed.
- B) Energy is absorbed as bonds are broken.
- C) Energy is released as bonds are formed.
- D) Energy is released as bonds are broken.

14

Enthalpy Practice Questions

4. Which balanced equation represents an endothermic reaction?

A)
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

B)
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$$

C)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

D) $N_2(g) + O_2(g) \rightarrow 2NO(g)$

Enthalpy Practice Questions

6. Which reaction releases the greatest amount of energy per 2 moles of product?

A) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ B) $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$ C) $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ D) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Enthalpy Practice Questions

7. Given the balanced equation representing a reaction at 101.3 kPa and 298 K:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) + 91.8 \text{ kJ}$ Which statement is true about this reaction?

A) It is exothermic and $\triangle H \text{ equals } -91.8 \text{ kJ}$.

- B) It is exothermic and $\triangle H$ equals +91.8 kJ.
- C) It is endothermic and $\triangle H$ equals -91.8 kJ.

D) It is endothermic and $\triangle H$ equals +91.8 kJ.

18

17

Enthalpy Practice Questions

8. Given the reaction:

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell) + 571.6 \text{ kJ}$ What is the approximate $\triangle H$ for the formation of 1 mole of $H_2O(\ell)$?

A) –285.8 kJ	B) +285.8 kJ
C) -571.6 kJ	D) +571.6 kJ

Ч	
9.	Given the reaction:
	$H_2O(\ell) + 286kJ \leftrightarrow H_2(g) + \frac{1}{2}O_2(g)$
	Which statement describes the reverse reaction?
	A) It is endothermic and releases 286 kJ.
	B) It is endothermic and absorbs 286 kJ.
	C) It is exothermic and releases 286 kJ.
	D) It is exothermic and absorbs 286 kJ.

Enthalpy Practice Questions

10. According to Reference Table I, which reaction has a ΔH equal to -283 kJ/mole at 25°C and 1 atmosphere?

$$\begin{array}{l} \textbf{A)} \ C(s) + O_2(g) \to CO_2(g) \\ \textbf{B)} \ CO(g) + \frac{1}{2} \, O_2(g) \to CO_2(g) \\ \textbf{C)} \ \frac{1}{2} \, N_2 + \frac{3}{2} \, O_2 \to NH_3(g) \\ \textbf{D)} \ 2 \, C + 3 \, H_2 \to C_2 H_6 \end{array}$$

21

Enthalpy Practice Questions - Answers

1. C

2. D 3. B

4. D

5. A

6. B 7. A

8. A

9. C

10. B

22