

1

Endothermic Reactions

- Heat is absorbed by reactants
- Energy is stored in chemical bonds of the products
- $\Delta \mathrm{H}$ is (+)
- $\underline{\mathbf{A + B}+\text { Energy }} \boldsymbol{\rightarrow} \mathbf{C + D}$

3

Heat of Reaction

- The amount of heat energy lost or gained throughout the reaction
- $\Delta \mathrm{H}_{\text {heat of reaction }}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
- $\Delta \mathrm{H}=$ enthalpy

2

Endothermic Example A $+\mathrm{B} \rightarrow \mathrm{C}$

- If $\mathrm{H}_{\mathrm{A}}=40 \mathrm{~kJ}$ and $\mathrm{H}_{\mathrm{B}}=20 \mathrm{~kJ}$, then the reactants have a total or 60 kJ
- If $\mathrm{H}_{\mathrm{C}}=110 \mathrm{~kJ}$, then 50 kJ of heat must have been absorbed by the reactants.
- ($110-60=50 \mathrm{~kJ})$
- Rewritten: $\mathrm{A}+\mathrm{B}+50 \mathrm{~kJ} \rightarrow \mathrm{C}$
- Total energy on both sides are equal (law of conservation of energy)

5

Table I:

Heat of Reaction at 101.3 kPa and 298 K

- The $\Delta \mathrm{H}$ values are based on molar quantities represented in the equations. A minus sign indicates an exothermic reaction
- Two ways to write $+\Delta \mathrm{H}$
- $\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{(g)}[\Delta \mathrm{H}+182.6 \mathrm{~kJ}]$
- $182.6 \mathrm{~kJ}+\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{(\mathrm{g})}$
- Two ways to write $-\Delta \mathrm{H}$
- $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad[\Delta \mathrm{H}-890.4 \mathrm{~kJ}]$
- $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}+890.4 \mathrm{~kJ}$

Exothermic Example A + B \rightarrow C

- If $H_{A}=60 \mathrm{~kJ}$ and $\mathrm{H}_{\mathrm{B}}=40 \mathrm{~kJ}$, then the reactants have a total of 100 kJ
- If $\mathrm{H}_{\mathrm{C}}=30 \mathrm{~kJ}$, then 70 kJ of heat must be released as a product - $(100-30=70)$
- Rewritten: A + B \rightarrow C + 70 kJ
- Total energy on both sides are equal (law of conservation of energy)

6

Question:What if the reaction is the opposite of what it says on Table I?

- What is the $\Delta \mathrm{H}$ of the following reaction? Is this exothermic or endothermic?
- $2 \mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}$
- Table I says: $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}_{(l)}[\Delta \mathrm{H}=-571.6]$
- Answer: +571.6 kJ (endothermic)
-* For reverse reactions, switch the signs of $\Delta \mathrm{H}$

Sample Problem: \#1

- Given the reaction $2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})} \Delta \mathrm{H}=-556.0 \mathrm{~kJ}$
- How much heat would be released is 4 moles of carbon monoxide were consumed by oxygen?

Sample Problem \#2:

- Given the reaction $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}_{(l)}[\Delta \mathrm{H}=-571.6]$
- Calculate $\Delta \mathrm{H}$ for the following reaction: $\mathrm{H}_{2(g)}+1 / 2 \mathrm{O}_{2(g)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}$

YOU

11

NOTYOU

Enthalpy Practice Questions

1. According to Table I, which equation represents a change resulting in the greatest quantity of energy released?
A) $2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
B) $2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
C) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$

Enthalpy Practice Questions

2. In a chemical reaction, the difference between the potential energy of the products and the potential energy of the reactants is equal to the
A) activation energy
B) entropy of the system
C) heat of fusion
D) heat of reaction

Enthalpy Practice Questions

3. Given the balanced equation representing a reaction:
$\mathrm{H}_{2} \rightarrow \mathrm{H}+\mathrm{H}$
What occurs during this reaction?
A) Energy is absorbed as bonds are formed.
B) Energy is absorbed as bonds are broken.
C) Energy is released as bonds are formed.
D) Energy is released as bonds are broken.

14

Enthalpy Practice Questions

5. Given the balanced equation representing a reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\text { heat }
$$

Which statement is true about energy in this reaction?
A) The reaction is exothermic because it releases heat.
B) The reaction is exothermic because it absorbs heat.
C) The reaction is endothermic because it releases heat.
D) The reaction is endothermic because it absorbs heat.

Enthalpy Practice Questions

6. Which reaction releases the greatest amount of energy per 2 moles of product?
A) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
B) $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
C) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Enthalpy Practice Questions

7. Given the balanced equation representing a reaction at 101.3 kPa and 298 K :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+91.8 \mathrm{~kJ}$
Which statement is true about this reaction?
A) It is exothermic and ΔH equals -91.8 kJ .
B) It is exothermic and ΔH equals +91.8 kJ .
C) It is endothermic and ΔH equals -91.8 kJ .
D) It is endothermic and ΔH equals +91.8 kJ .

18

Enthalpy Practice Questions

9. Given the reaction:

$$
\mathrm{H}_{2} \mathrm{O}(\ell)+286 \mathrm{~kJ} \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

Which statement describes the reverse reaction?
A) It is endothermic and releases 286 kJ .
B) It is endothermic and absorbs 286 kJ .
C) It is exothermic and releases 286 kJ .
D) It is exothermic and absorbs 286 kJ .

20

Enthalpy Practice Questions

10. According to Reference Table I, which reaction has a ΔH equal to $-283 \mathrm{~kJ} / \mathrm{mole}$ at $25^{\circ} \mathrm{C}$ and 1 atmosphere?
A) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
B) $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
C) $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$

Enthalpy Practice Questions - Answers

1. C
2. D
3. B
4. D
5. A
6. B
7. A
8. A
9. C
D) $2 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
