- 1. Which formula is an empirical formula?
 - A) N₂O₄ B) NH₃ C) C₃H₆ D) P₄O₁₀
- 2. Given the formula for a compound:

Which molecular formula and empirical formula represent this compound?

- A) C₂HNO₂ and CHNO
- B) C₂HNO₂ and C₂HNO₂
- C) C₄H₂N₂O₄ and CHNO
- D) C₄H₂N₂O₄ and C₂HNO₂
- 3. Which substances have atoms of the same element but different molecular structures?
 - A) He(g) and Ne(g)
- B) $O_2(g)$ and $O_3(g)$
- C) K(s) and Na(s)
- D) $P_4(s)$ and $S_8(s)$
- 4. A compound has the empirical formula CH₂O and a gram-formula mass of 60. grams per mole. What is the molecular formula of this compound?
 - A) CH₂O
- B) C₂H₄O₂
- C) C₃H₈O
- D) C₄H₈O₄
- 5. Given the balanced equation representing a reaction:

$$2Na(s) + Cl_0(g) \rightarrow 2NaCl(s) + energy$$

If 46 grams of Na and 71 grams of Cl2 react completely, what is the total mass of NaCl produced?

- A) 58.5 g
- B) 117 g
- C) 163 g
- D) 234 g
- 6. What is the gram-formula mass of Ca(OH)₂?
 - A) 29 g/mol
- B) 54 g/mol
- C) 57 g/mol
- D) 74 g/mol
- 7. What is the gram-formula mass of $Fe(NO_3)_3$?
 - A) 146 g/mol
- B) 194 g/mol
- C) 214 g/mol
- D) 242 g/mol

- 8. What is the total number of moles of oxygen atoms in 1 mole of N₂O₃?
 - A) 1
- B) 2
- C) 3
- D) 5
- 9. One mole of O₂ has approximately the same mass as one mole of
 - A) CH₄ B) S
- C) LiH D) Cl₂
- 10. What is the percent composition by mass of nitrogen in (NH₄)₂CO₃ (gram-formula mass = 96.0 g/mol)?
 - A) 14.6%
- B) 29.2%
- C) 58.4%
- D) 87.5%
- 11. Which quantity can be calculated for a solid compound, given only the formula of the compound and the Periodic Table of the Elements?
 - A) the density of the compound
 - B) the heat of fusion of the compound
 - C) the melting point of each element in the compound
 - D) the percent composition by mass of each element in the compound
- 12. Which compound has the *smallest* percent composition by mass of chlorine?
 - A) HCl B) KCl C) LiCl D) NaCl
- 13. Given the balanced equation:

$$2KI + F_2 \rightarrow 2KF + I_2$$

Which type of chemical reaction does this equation represent?

- A) synthesis
- B) decomposition
- C) single replacement
- D) double replacement

14. Given the balanced equation representing a reaction:

$$K_2CO_3(aq) + BaCl_2(aq) \rightarrow 2KCl(aq) + BaCO_3(s)$$

Which type of reaction is represented by this equation?

A) synthesis

B) decomposition

C) single replacement

D) double replacement

15. Which change results in the formation of different substances?

A) burning of propane

- B) melting of NaCl(s)
- C) deposition of $CO_2(g)$
- D) solidification of water

16. Which terms identify types of chemical reactions?

A) decomposition and sublimation

B) decomposition and synthesis

- C) deposition and sublimation
- D) deposition and synthesis
- 17. Given the word equation:

 $sodium\ chlorate \rightarrow sodium\ chloride + oxygen$

Which type of chemical reaction is represented by this equation?

- A) double replacement
- B) single replacement
- C) decomposition
- D) synthesis

18. Given the reaction at 101.3 kilopascals and 298 K:

 $hydrogen\ gas + iodine\ gas \rightarrow hydrogen\ iodide\ gas$

This reaction is classified as

A) endothermic, because heat is absorbed

- B) endothermic, because heat is released
- C) exothermic, because heat is absorbed
- D) exothermic, because heat is released

19. Which equation shows conservation of mass and energy for a reaction at 101.3 kPa and 298 K?

A)
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + 483.6 \text{ kJ}$$

B)
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(1) + 285.8 \text{ kJ}$$

$$C) \hspace{0.2cm} H_2(g) + O_2(g) \rightarrow H_2O(g) + 483.6 \hspace{0.2cm} kJ$$

D)
$$H_2(g) + O_2(g) \rightarrow H_2O(l) + 285.8 \text{ kJ}$$

20. The coefficients in a balanced chemical equation represent

A) the mass ratios of the substances in the reaction

B) the mole ratios of the substances in the reaction

- C) the total number of electrons in the reaction
- D) the total number of elements in the reaction

21. Given the incomplete equation representing a reaction:

$$2C_6H_{14} + \underline{\hspace{1cm}} O_2 \rightarrow 12CO_2 + 14H_2O$$

What is the coefficient of O₂ when the equation is completely balanced using the smallest whole-number coefficients?

- A) 13
- B) 14
- C) 19
- D) 26

22. Given the unbalanced equation:

$$Al(s) + D_2(g) \rightarrow Al_2O_3(s)$$

When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O 2(g)?

- A) 6
- B) 2
- C) 3
- D) 4

23.	Given	the	incom	plete	equation	represe	enting a	reaction:

$$2Na(s) + 2H_2O(\ell) \rightarrow 2Na^+(aq) + 2$$
 _____(aq) + $H_2(g)$

What is the formula of the missing product?

- **A)** O²⁻
- B) O_2
- **C)** OH⁻
- D) OH

24. Given the balanced equation representing a reaction:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

What is the number of moles of $H_2O(g)$ formed when 2.0 moles of $NH_3(g)$ react completely?

- A) 6.0 mol
- B) 2.0 mol
- C) 3.0 mol
- D) 4.0 mol

25. Given the balanced equation representing a reaction:

$$2H_2 + O_2 \rightarrow 2H_2O + energy$$

Which mass of oxygen completely reacts with 4.0 grams of hydrogen to produce 36.0 grams of water?

- A) 8.0 g
- B) 16.0 g
- C) 32.0 g
- D) 40.0 g

26. Which sample of gas at STP has the same number of molecules as 6 liters of
$$Cl_2(g)$$
 at STP?

- A) 3 liters of $O_2(g)$
- B) 6 liters of $N_2(g)$
- C) 3 moles of $O_2(g)$ D) 6 moles of $N_2(g)$

Base your answers to questions 27 through 29 on the information below and on your knowledge of chemistry.

Given the unbalanced equation showing the reactants and product of a reaction occurring at 298 K and 100. kPa:

$$P_4(s) + Cl_2(g) \rightarrow PCl_3(l) + energy$$

- 27. Show a numerical setup for calculating the percent composition by mass of chlorine in PCl₃(*l*) (gram-formula mass = 137 g/mol).
- 28. State why this reaction is a synthesis reaction.
- 29. Balance the equation below for the reaction, using the smallest whole number coefficients.

$$\underline{\hspace{1cm}}$$
 P4(s) + $\underline{\hspace{1cm}}$ Cl₂(g) \rightarrow $\underline{\hspace{1cm}}$ PCl₃(l) + energy

Base your answers to questions 30 and 31 on the information below and on your knowledge of chemistry.

Ammonia, NH₃(g), can be used as a substitute for fossil fuels in some internal combustion engines. The reaction between ammonia and oxygen in an engine is represented by the unbalanced equation below.

$$NH_3(g) + O_2(g) \rightarrow N_2(g) + H_2O(g) + energy$$

- 30. Show a numerical setup for calculating the mass, in grams, of a 4.2-mole sample of O_2 . Use 32 g/mol as the gram-formula mass of O_2
- 31. Balance the equation for the reaction of ammonia and oxygen, using the smallest whole-number coefficients.

Base your answers to questions **32** and **33** on the information below and on your knowledge of chemistry.

A sample of calcium carbonate, CaCO₃, has a mass of 42.2 grams. Calcium carbonate has a gram-formula mass of 100. g/mol.

- 32. Determine the percent composition by mass of oxygen in the CaCO₃.
- 33. Show a numerical setup for calculating the number of moles in the sample of CaCO₃.

Base your answers to questions **34** and **35** on the information below and on your knowledge of chemistry.

The densities for two forms of carbon at room temperature are listed in the table below.

Densities of Two Forms of Carbon

Element Form	Density (g/cm ³)		
carbon (graphite)	2.2		
carbon (diamond)	3.513		

- 34. A student calculated the density of a sample of graphite to be 2.3 g/cm³. Show a numerical setup for calculating the student's percent error for the density of graphite.
- 35. Compare the number of carbon atoms in a 0.30-cm³ sample of graphite and a 0.30-cm³ sample of diamond.

Answer Key Stoichiometry Review

1.	В

27.

$$\frac{3(35.5~\mathrm{g/mol})}{137~\mathrm{g/mol}} \times 100$$

$$\frac{3(35.453)}{127} \times 100$$

$$106 \times 100$$

$$\frac{3(35)}{136} \times 100$$

- Two reactants form only one product.
- Two substances react to form one substance.

$$29.$$
 _____P_4(s) + ___6 _ CL_2(g) \rightarrow __4 _ PCL_3(\ell) + energy

30.
$$4.2 \text{ mol} = \frac{x}{32 \text{ g/mol}}$$

$$(4.2 \text{ mol}) \left(\frac{32 \text{ g}}{1 \text{ mol}} \right)$$

$$42.2\,\mathrm{g}\, imes rac{1.00\,\mathrm{mol}}{100.\,\mathrm{g}}$$

$$\frac{x}{42.2} = \frac{1}{100}$$

$$\frac{2.3~{\rm g/cm^3}-~2.2~{\rm g/cm^3}}{2.2~{\rm g/cm^3}}~\times~100$$

$$\frac{2.3 - 2.2}{2.2} \times 100$$