- 1. Which formula is an empirical formula?
- A) N₂O₄ B) NH₃ C) C₃H₆ D) P₄O₁₀
- 2. Given the formula for a compound:

Which molecular formula and empirical formula represent this compound?

- A) C₂HNO₂ and CHNO
- B) C₂HNO₂ and C₂HNO₂
- C) C4H2N2O4 and CHNO
- D) C4H2N2O4 and C2HNO2
- 3. Which substances have atoms of the same element but different molecular structures?
 - A) He(g) and Ne(g) B) $O_2(g)$ and $O_3(g)$
 - C) K(s) and Na(s) D) P4(s) and S8(s)
- 4. A compound has the empirical formula CH₂O and a gram-formula mass of 60. grams per mole. What is the molecular formula of this compound?

A) CH ₂ O	B) C ₂ H ₄ O ₂
C) C3H8O	D) C4H8O4

5. Given the balanced equation representing a reaction:

 $2Na(s) + Cl_2(g) \rightarrow 2NaCl(s) + energy$

If 46 grams of Na and 71 grams of Cl₂ react completely, what is the total mass of NaCl produced?

A) 58.5 g	B) 117 g
C) 163 g	D) 234 g

6. What is the gram-formula mass of Ca(OH)₂?

A)	29 g/mol	B) 54 g/mol
C)	57 g/mol	D) 74 g/mol

- C) 57 g/mol D) 74 g/mol
- 7. What is the gram-formula mass of $Fe(NO_3)_3$?

A) 146 g/mol	B) 194 g/mol
() 214g/mol	D) 242g/mol

C) 214 g/mol D) 242 g/mol

8. What is the total number of moles of oxygen atoms in 1 mole of N_2O_3 ?

A) 1 B) 2 C) 3 D) 5

9. One mole of O₂ has approximately the same mass as one mole of

A) CH₄ B) S C) LiH D) Cl₂

10. What is the percent composition by mass of nitrogen in (NH4)₂CO₃ (gram-formula mass = 96.0 g/mol)?

A) 14.6%	B) 29.2%
C) 58.4%	D) 87.5%

- 11. Which quantity can be calculated for a solid compound, given only the formula of the compound and the Periodic Table of the Elements?
 - A) the density of the compound
 - B) the heat of fusion of the compound
 - C) the melting point of each element in the compound
 - D) the percent composition by mass of each element in the compound
- 12. Which compound has the *smallest* percent composition by mass of chlorine?

A) HCl B) KCl C) LiCl D) NaCl

13. Given the balanced equation:

 $2KI + F_2 \rightarrow 2KF + I_2$

Which type of chemical reaction does this equation represent?

- A) synthesis
- B) decomposition
- C) single replacement
- D) double replacement

14. Given the balanced equation representing a reaction:		
$\mathrm{K_2CO_3(aq)} + \mathrm{BaCl_2(aq)} \rightarrow \mathrm{2KCl(aq)} + \mathrm{BaCO_3(s)}$		
Which type of reaction is represented by this	s equation?	
A) synthesisC) single replacement	B) decompositionD) double replacement	
15. Which change results in the formation of dif substances?	ferent19. Which equation shows conservation of mass and energy for a reaction at 101.3 kPa and 298 K?	
 A) burning of propane B) melting of NaCl(s) C) deposition of CO₂(g) D) solidification of water 	$\begin{array}{l} \mbox{A)} \ \ 2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + 483.6 \ kJ \\ \mbox{B)} \ \ 2H_2(g) + O_2(g) \rightarrow 2H_2O(l) + 285.8 \ kJ \\ \mbox{C)} \ \ H_2(g) + O_2(g) \rightarrow H_2O(g) + 483.6 \ kJ \\ \mbox{D)} \ \ H_2(g) + O_2(g) \rightarrow H_2O(l) + 285.8 \ kJ \end{array}$	
16. Which terms identify types of chemical reactA) decomposition and sublimation	tions? 20. The coefficients in a balanced chemical equation represent	
B) decomposition and sublimationB) deposition and sublimationD) deposition and synthesis	A) the mass ratios of the substances in the reactionB) the mole ratios of the substances in the reactionC) the total number of electrons in the reactionD) the total number of electrons in the reaction	
17. Given the word equation: sodium chlorate \rightarrow sodium chloride + oxyge	21. Given the incomplete equation representing a reaction:	
Which type of chemical reaction is represent this equation?	ted by $2C_6H_{14} + _ O_2 \rightarrow 12CO_2 + 14H_2O$	
A) double replacementB) single replacementC) decomposition	What is the coefficient of O ₂ when the equation is completely balanced using the smallest whole-number coefficients?	
D) synthesis	A) 13 B) 14 C) 19 D) 26	
18. Given the reaction at 101.3 kilopascals and 2	298 K: 22. Given the unbalanced equation:	
hydrogen gas + iodine gas \rightarrow hydrogen iodid	$ Al(s) + O_2(g) \rightarrow Al_2O_3(s)$ le gas	
This reaction is classified asA) endothermic, because heat is absorbedB) endothermic, because heat is releasedC) exothermic, because heat is absorbedD) exothermic, because heat is released	 When this equation is correctly balanced using smallest whole numbers, what is the coefficient of O 2(g)? A) 6 B) 2 C) 3 D) 4 	

23.	Given the incomplete equation representing a reaction:			
	$2Na(s) + 2H_2O(\ell) \rightarrow 2Na^+(aq) + 2$ (aq) + H ₂ (g)			
	What is the formula o	of the missing produ	ict?	
	A) O ²⁻ B	B) O ₂	C) OH ⁻	D) ^{OH}
24.	Given the balanced ec	quation representing	g a reaction:	
	$4\mathrm{NH}_3(\mathrm{g}) + 5\mathrm{O}_2(\mathrm{g}) \rightarrow 0$	$4\mathrm{NO}(\mathrm{g}) + 6\mathrm{H}_2\mathrm{O}(\mathrm{g})$		
	What is the number of moles of $H_2O(g)$ formed when 2.0 moles of $NH_3(g)$ react completely?			
	A) 6.0 molC) 3.0 mol	B) 2.0 molD) 4.0 mol		
25.	Given the balanced eq $2H_2 + O_2 \rightarrow 2H_2O + e_1$	quation representing nergy	g a reaction:	
	Which mass of oxygen completely reacts with 4.0 grams of hydrogen to produce 36.0 grams of water?			
	A) 8.0 gC) 32.0 g	B) 16.0 gD) 40.0 g		
26.	Which sample of gas	at STP has the sam	e number of	

molecules as 6 liters of $Cl_2(g)$ at STP?

A) 3 liters of $O_2(g)$ B) 6 liters of $N_2(g)$

C) 3 moles of $O_2(g)$ D) 6 moles of $N_2(g)$

Base your answers to questions 27 through 29 on the information below and on your knowledge of chemistry.

Given the unbalanced equation showing the reactants and product of a reaction occurring at 298 K and 100. kPa:

 $P_4(s) + Cl_2(g) \rightarrow PCl_3(l) + energy$

- 27. Show a numerical setup for calculating the percent composition by mass of chlorine in $PCl_3(l)$ (gram-formula mass = 137 g/mol).
- 28. State why this reaction is a synthesis reaction.
- 29. Balance the equation below for the reaction, using the smallest whole number coefficients.

 $\underline{P_4(s)} + \underline{Cl_2(g)} \rightarrow \underline{PCl_3(l)} + energy$

Base your answers to questions **30** and **31** on the information below and on your knowledge of chemistry.

Ammonia, NH₃(g), can be used as a substitute for fossil fuels in some internal combustion engines. The reaction between ammonia and oxygen in an engine is represented by the unbalanced equation below.

 $NH_3(g) + O_2(g) \rightarrow N_2(g) + H_2O(g) + energy$

- 30. Show a numerical setup for calculating the mass, in grams, of a 4.2-mole sample of $\rm O_2$. Use 32 g/mol as the gram-formula mass of $\rm O_2$
- 31. Balance the equation for the reaction of ammonia and oxygen, using the smallest whole-number coefficients.

Base your answers to questions **32** and **33** on the information below and on your knowledge of chemistry.

A sample of calcium carbonate, CaCO₃, has a mass of 42.2 grams. Calcium carbonate has a gram-formula mass of 100. g/mol.

- 32. Determine the percent composition by mass of oxygen in the CaCO₃.
- 33. Show a numerical setup for calculating the number of moles in the sample of CaCO₃.

Base your answers to questions **34** and **35** on the information below and on your knowledge of chemistry.

The densities for two forms of carbon at room temperature are listed in the table below.

Densities of Two Forms of Carbon

Element Form	Density (g/cm ³)
carbon (graphite)	2.2
carbon (diamond)	3.513

- 34. A student calculated the density of a sample of graphite to be 2.3 g/cm³. Show a numerical setup for calculating the student's percent error for the density of graphite.
- 35. Compare the number of carbon atoms in a 0.30-cm³ sample of graphite and a 0.30-cm³ sample of diamond.