| Name: | Y.EY | Official Class | Dates | | |---|--|--|---|--| | Teacher: | | | Class: | | | Writing and Balancing Half Reactions | | | | | | Identifying if a reaction is a | | 3 | | | | Are electrons transferred? process and assign oxidate numbers for any of the atom the product side, electron to passage above, write how to the product side. | To answer this question numbers to the ans in the reactants are ransfer must have occoyou can tell if a reacti | atoms in all of the reactants e different from the oxidatio curred, and you have a redo | vn the chemical equation for the sand products. If the oxidation on number for the same atoms or x reaction. Based on the reading | | | You know it's redox when | *** | You know it's NOT re | edox when | | | -OX # Harrison | | -oxthis don't ch | -oxts dont chango
- double replacement reactions, | | | -0x # change
-asingle replacement rea | ction occurs | - double replacement | t reactions, | | | | | | | | | Half reaction shows the Prichards of electrons in a redox reaction One half reaction shows oxidation; the other shows reduction Example of a Reduction Half Reaction Fe³⁺ + 3e⁻ > Fe⁰ (electrons gained on a reaction) Electrons on the left side, gained in the reaction Example of an Oxidation Half Reaction Fe⁰ > Fe³⁺ x 3e⁻ (electrons) strand graduct) Electrons are the right hand side, loss of electrons in the reaction Always and electrons to the side the reaction that has the more positive charge Complete the Incomplete Half-Reactions – rewrite the equation and place the correct number of electrons on the appropriate side I₂ → 2I⁻ | | | | | | reaction o Conservation | r: rvation of mass: | arge must be the state of s | on both sides of the on both sides Mg'. 0 > +2 | | | Identify oxidation an | Mg + Zn
ad reduction → l | $Cl_2 \rightarrow MgCl_2 + Zn$ $-1 + 1 - 2$ ctrons were lost and the ox | Mg'. $0 \Rightarrow 12$ Zn $12 \Rightarrow 0$ Cl: $-1 \Rightarrow -1$ cidation number increased | | | Unit 11 - Redox | | | | | | Name: | KEY | Official Class: | Date: | | |---|---|------------------------------|--|--| | Teacher: | | Period: | Class: | | | Teacher: Period: Class: o | | | | | | • Write the oxidation and reduction half reactions Mg + 77Cl → MgCl + 77 | | | | | | | $Mg^{\circ} + ZnCl_2 -$ | MgCl ₂ + Zn | | | | o Reduction Half Reaction: Zn ⁺² + | | 2é > Zn° | Zn: +270 (r | | | o Oxidation Half Reactions: $Mg^0 \rightarrow Mg^{+2} + 2e^-$ | | | | | | Balance masses (change coefficients) and balance charge – multiply each half reaction to have the same number of electrons | | | | | | $Mg + ZnCl_2 \rightarrow MgCl_2 + Zn$ | | | | | | o Reduction: Zn+2 + 2e = Zn0 Znorming and good | | | | | | same number of electrons $Mg + ZnCl_2 \rightarrow MgCl_2 + Zn$ o Reduction: $Zn^{+2} + 2e^{-} \rightarrow Zn^{0}$ Oxidation: $Mg^{*} \rightarrow Mg^{+2} + 2e^{-}$ Then belongs out the | | | | | | Practice: For each reaction, write the oxidation and reduction half reactions. Then balance out the equations. $\ensuremath{\text{LEO}} \ensuremath{\text{GEL}}$ | | | | | | | $\text{Li} + \text{Ca}^{+2} \rightarrow \text{Li}^{+1} + \text{Ca} \text{Li} : 0 \rightarrow +1$ | Mn + Cu | $u^{+2} \rightarrow Mn^{+4} + Cu$ $Cv:+2>0$ | | | 0.1 | Ca: +2 > 0 | Red Cutz 2- | 80.00 | | | Ca | 12 1 2e -> Ca° / | Red: Cut2 +Ze Ox: Mn -> Mnt4 | +4e- | | | ox:
Li° > Li' + e- | | Balance (Cuz+ +Ze | - 7 Cu 0) 2 | | | | | L ₂ 2 | Cu2+ +4e- >> 2Cu0 | | | Balane | of rxn (Li°>Li1' +e-)2 | combined: Mino + 2a | 12 > Mn 49 + 2 Cu | | | ali+Cat | 7 2 Li+ (a) -> 2 Li+ + 2e- | | | | | | $Ni + Fe^{+3} \rightarrow Ni^{+3} + Fe \qquad Fe: 13 \rightarrow 0$ | Zn + C | $2r^{3+} \rightarrow Zn^{2+} + Cr$ $Z_{n',0\rightarrow +2}$ $C_{r',+3\rightarrow 0}$ | | | 11 6 | | 1 4 1 4 12 | 1 | | (syntames Balance of the Li^o > Li^{1'} + e) 2 $\frac{2 + Ca^{12} + 2Cu^{1'} + Ca}{2 + Ca^{1'} + Ca} = \frac{2 + Ca}{2 C$