Name:	Off.	Class:	Per: _	Date:
Scanlon	Equilibrium/Le Cha	telier's Reg	ents Practice	Chemistry
Name: Scanlon 1. Which equation represents a cl A) $N_2(\ell) \Rightarrow N_2(g)$ B) $2NO_2(g) \Rightarrow N_2O_4(g)$ C) $CO_2(g) \Rightarrow CO_2(g)$ D) $NH_3(\ell) \Rightarrow NH_3(g)$ 2. When a reversible reaction is a products and the concentration A) decreasing H C) constant H 3. Given the equation representing $AgCl(s) \stackrel{H_2O}{=} Ag^+(aq) + Cl^-(aq)$ When the concentration of Cl- of $Ag^+(aq)$ A) decreases, and the amount B) decreases, and the amount C) increases, and the amount D) increases, and the amount C) increases, and the amount C) increases, and the amount A) decreases, and the amount C) increases, and the amount D) increases, and the amount A) The rate of dissolving is ea B) The rate of dissolving is grace crystallization. C) The concentration of the solution. D) The concentration equilibrium exi ℓ) and Br2(g) at 298 K and 1.0 A) static phase equilibrium D) dynamic solution equilibrium D) dynamic solution equilibrium C) dynamic solution equilibrium D) dynamic solution equilibrium	Off. Equilibrium/Le Char hemical equilibrium? At equilibrium, the concentration of n of reactants must be B) increasing D) equal ng a system at equilibrium: (aq) is increased, the concentration of AgCl(s) increases of AgCl(s) increases of AgCl(s) decreases of AgCl(s) decreases of AgCl(s) decreases the bottom of a stoppered flask aq) solution at 22°C. Which intents of the flask are at qual to the rate of crystallization. reater than the rate of olid is greater than the on. sts in a sealed flask containing Br atm?	Class: telier's Reg 7. Ammoni $N_2(g)$ The form A) an in C) remo 8. Given th A(g) + B The addi A) shift B) shift C) incre D) have on 9. What occ A) an al B) an al energ C) the si D) the s 10. Given th $2SO_2(g)$ Which A) add B) add C) dec D) incr 11. Given t $2SO_2(g)$	Per: ents Practice a is produced common $() + 3 H_2(g) \leftrightarrow 2 NH$ hation of ammonia crease in pressure oval of N ₂ (g) e reaction at equilibrium (g) $\leftrightarrow C(g) + D(g)$ tion of a catalyst we the equilibrium to the ase the rate of forw no effect on the for curs when a catalyst ternate reaction path ternate reaction path (g) $\Rightarrow C(g) = 2SO_3(g) -$ change causes the equilibrium represe $+ O_2(g) \Rightarrow 2SO_3(g) -$ change causes the equilibrium represe $+ O_2(g) \Rightarrow 2SO_3(g) -$ change causes the equilibrium represe $x^2(g) + 3H_2(g)$ ccurs when the con e equilibrium shifts g) decreases.	Date:
 of the solution. D) The concentration of the solid is greater than the concentration of the solution. 5. Which type of equilibrium exists in a sealed flask containing Brack (e) and Br2(g) at 298 K and 1.0 atm? A) static phase equilibrium B) static solution equilibrium C) dynamic phase equilibrium D) dynamic solution equilibrium 6. Which balanced equation represents a phase equilibrium? A) H₂(g) + I₂(g) ⇒ 2HI(g) B) 2NO₂(g) ⇒ N₂O₄(g) C) Cl₂(g) ⇒ Cl₂(l) D) 3O₂(g) ⇒ 2O₃(g) 		D) incl 11. Given t 2(What out A) The N2(l B) The N2(l C) The N2(l D) The N2(l	reasing the tempera he equation represe N ₂ (g) + 3H ₂ (g) ccurs when the con e equilibrium shifts g) decreases. equilibrium shifts g) increases. equilibrium shifts g) decreases. e equilibrium shifts g) decreases. e equilibrium shifts g) decreases.	ture enting a reaction at equilibrium:) \leftrightarrow 2NH ₃ (g) centration of H ₂ (g) is increased? to the left, and the concentration of to the left, and the concentration of to the right, and the concentration of to the right, and the concentration of

12. Given the equation representing a reaction at equilibrium:	14. Given the equation representing a system at equilibrium:		
$\begin{array}{l} \mathrm{N}_2(g) + 3 \mathrm{H}_2(g) \rightleftharpoons 2 \mathrm{NH}_3(g) + \mathrm{energy} \\ \mathrm{Which \ change \ causes \ the \ equilibrium \ to \ shift \ to \ the \ right?} \\ \mathrm{A) \ decreasing \ the \ concentration \ of \ }_{\mathrm{H}_2(g)} \\ \mathrm{B) \ decreasing \ the \ concentration \ of \ }_{\mathrm{N}_2(g)} \\ \mathrm{B) \ decreasing \ the \ concentration \ of \ }_{\mathrm{N}_2(g)} \\ \mathrm{D) \ increasing \ the \ concentration \ of \ }_{\mathrm{N}_2(g)} \\ \mathrm{D) \ increasing \ the \ temperature} \\ 13. \ \mathrm{Given \ the \ equation \ representing \ a \ system \ at \ equilibrium:} \\ \mathrm{N}_2(\mathrm{g}) + 3\mathrm{H}_2(\mathrm{g}) \leftrightarrow 2\mathrm{NH}_3(\mathrm{g}) + \mathrm{energy} \\ \mathrm{Which \ changes \ occur \ when \ the \ temperature \ of \ this \ system \ is \ decreased?} \end{array}$	$KNO_{3}(s) + energy \stackrel{H_{2}O}{\longleftrightarrow} K^{+}(aq) + NO_{3}^{-}(aq)$ Which change causes the equilibrium to shift? A) increasing pressure B) increasing temperature C) adding a noble gas D) adding a catalyst 15. Which system at equilibrium will shift to the right when the pressure is increased? A) NaCl(s) \stackrel{H_{2}O}{\rightleftharpoons} Na^{+}(aq) + Cl^{-}(aq) B) $C_{2}H_{5}OH(\ell) \stackrel{H_{2}O}{=} C_{2}H_{5}OH(aq)$ C) $NH_{3}(g) \stackrel{H_{2}O}{=} NH_{3}(aq)$ D) $C_{6}H_{12}O_{6}(s) \stackrel{H_{2}O}{=} C_{6}H_{12}O_{6}(aq)$		
 A) The concentration of H₂(g) increases and the concentration of N₂(g) increases. B) The concentration of H₂(g) decreases and the concentration of N₂(g) increases. C) The concentration of H₂(g) decreases and the 	 16. Given the equilibrium reaction at STP: N₂O₄(g) ↔ 2 NO₂ (g) Which statement correctly describes this system? A) The forward and reverse reaction rates are equal 		
concentration of NH₃(g) decreases.D) The concentration of H₂(g) decreases and the concentration of NH₃(g) increases.	 B) The forward and reverse reaction rates are equal. B) The forward and reverse reaction rates are both increasing. C) The concentrations of N₂O₄ and NO₂ are equal. D) The concentrations of N₂O₄ and NO₂ are both increasing. 		