Name:	Off.	Class:	Per:	Date:	
Teacher: Con	njugate Acid/Base	Pair Practice			Chemistry
 According to one acid-base theory, w acid when an H₂O molecule A) accepts an H⁺ B) donates a C) accepts an H⁻ D) donates a Given the reaction: HSO4⁻ + HPO4²⁻ ↔ SO4²⁻ + H₂PO Which pair represents an acid and its A) HSO4⁻ and SO4²⁻ 	ater acts as an7. Vn H+6n H-8. C04Nconjugate base?N	Which is the conjug A) H ₂ SO ₄ C) HSO ₃ - Given the reaction: $NH_3(g) + H_2O(\ell) \leftarrow$ Which is the conjug A) H ₂ O(ℓ) and NH	gate acid of HS B) H_3O^+ D) SO_4^{2-} $\rightarrow NH_4^+(aq) + Q$ gate acid-base p $I_4^+(aq)$	O4 [−] ? OH [−] (aq) pair?	
 B) HSO4⁻ and HPO4²⁻ C) SO4²⁻ and H₂PO4⁻ D) SO4²⁻ and HPO4²⁻ 		 B) H₂O(ℓ) and NH₃(g) C) NH₃(g) and OH⁻(aq) D) NH₃(g) and NH₄⁺(aq) 			
3. In the reaction NH ₃ + H ₂ O \leftrightarrow NH ₄ ⁺ + OH ⁻		9. Given the balanced equation representing a reaction: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$			
A conjugate acid-base pair is A) NH ₃ and H ₂ O B) NH ₃ and C) H ₂ O and NH ₄ ⁺ D) H ₂ O and 4. Given the reaction: H ₂ O + HCl \leftrightarrow H ₃ O ⁺ + Cl ⁻ The Brönsted-Lowry base for the forw A) H ₂ O B) HCl C) H ₃ O ⁺ D) C 5. Given the equilibrium system:	OH- A OH- 10. Nard reaction is 11. 11- 12.	 A) donates an H⁺ C) donates an OH⁻ The conjugate bas A) NH₃ C) H₂O The conjugate acid A) H⁺ B) S In the reaction: H₂PO₄ + H₂O 	B) accept B) accept D) accept se of NH4 ⁺ is B) OH ⁻ D) H ₃ O ⁺ d of the HS ⁻ io: C) H ₂ O E D \leftrightarrow H ₃ PO4 +	ts an H ⁺ ts and OF n is D) H ₂ S	Η- -
 NH₃(aq) + H₂O(ℓ) ↔ NH₄⁺(aq) + OH⁻(aq) According to the Brönsted-Lowry theory, the H₂O(ℓ) acts as A) a base, by receiving a proton B) a base, by donating a proton C) an acid, by receiving a proton D) an acid, by donating a proton 6. In the reaction H₂S + NH₃ ↔ NH₄⁺ + HS⁻, the two Brönsted-Lowry bases are A) NH₃ and HS⁻ B) NH₃ and NH₄⁺ C) H₂S and NH₃ D) H₂S and HS⁻ 		Which pair repres base? A) H ₂ O and H ₂ P(B) H ₂ O and H ₃ P(C) H ₃ PO ₄ and Ol D) H ₃ PO ₄ and H ₂	ents an acid and O4 O4 H ⁻ 2PO4 ⁻	d its conj	ugate